Benefits of panda's multiindex?
Solution 1:
Hierarchical indexing (also referred to as “multi-level” indexing) was introduced in the pandas 0.4 release.
This opens the door to some quite sophisticated data analysis and manipulation, especially for working with higher dimensional data. In essence, it enables you to effectively store and manipulate arbitrarily high dimension data in a 2-dimensional tabular structure (DataFrame), for example.
Imagine constructing a dataframe using MultiIndex
like this:-
import pandas as pd
import numpy as np
np.arrays = [['one','one','one','two','two','two'],[1,2,3,1,2,3]]
df = pd.DataFrame(np.random.randn(6,2),index=pd.MultiIndex.from_tuples(list(zip(*np.arrays))),columns=['A','B'])
df # This is the dataframe we have generated
A B
one 1 -0.732470 -0.313871
2 -0.031109 -2.068794
3 1.520652 0.471764
two 1 -0.101713 -1.204458
2 0.958008 -0.455419
3 -0.191702 -0.915983
This df
is simply a data structure of two dimensions
df.ndim
2
But we can imagine it, looking at the output, as a 3 dimensional data structure.
-
one
with1
with data-0.732470 -0.313871
. -
one
with2
with data-0.031109 -2.068794
. -
one
with3
with data1.520652 0.471764
.
A.k.a.: "effectively store and manipulate arbitrarily high dimension data in a 2-dimensional tabular structure"
This is not just a "pretty display". It has the benefit of easy retrieval of data since we now have a hierarchal index.
For example.
In [44]: df.ix["one"]
Out[44]:
A B
1 -0.732470 -0.313871
2 -0.031109 -2.068794
3 1.520652 0.471764
will give us a new data frame only for the group of data belonging to "one".
And we can narrow down our data selection further by doing this:-
In [45]: df.ix["one"].ix[1]
Out[45]:
A -0.732470
B -0.313871
Name: 1
And of course, if we want a specific value, here's an example:-
In [46]: df.ix["one"].ix[1]["A"]
Out[46]: -0.73247029752040727
So if we have even more indexes (besides the 2 indexes shown in the example above), we can essentially drill down and select the data set we are really interested in without a need for groupby
.
We can even grab a cross-section (either rows or columns) from our dataframe...
By rows:-
In [47]: df.xs('one')
Out[47]:
A B
1 -0.732470 -0.313871
2 -0.031109 -2.068794
3 1.520652 0.471764
By columns:-
In [48]: df.xs('B', axis=1)
Out[48]:
one 1 -0.313871
2 -2.068794
3 0.471764
two 1 -1.204458
2 -0.455419
3 -0.915983
Name: B
Solution 2:
Great post by @Calvin Cheng, but thought I'd take a stab at this as well.
When to use a MultiIndex:
- When a single column’s value isn’t enough to uniquely identify a row.
- When data is logically hierarchical - meaning that it has multiple dimensions or “levels.”
Why (your core question) - at least these are the biggest benefits IMO:
- Easy manipulation via stack() and unstack()
- Easy math when there are multiple column levels
- Syntactic sugar for slicing/filtering
Example:
Dollars Units
Date Store Category Subcategory UPC EAN
2018-07-10 Store 1 Alcohol Liqour 80480280024 154.77 7
Store 2 Alcohol Liqour 80480280024 82.08 4
Store 3 Alcohol Liqour 80480280024 259.38 9
Store 1 Alcohol Liquor 80432400630 477.68 14
674545000001 139.68 4
Store 2 Alcohol Liquor 80432400630 203.88 6
674545000001 377.13 13
Store 3 Alcohol Liquor 80432400630 239.19 7
674545000001 432.32 14
Store 1 Beer Ales 94922755711 65.17 7
702770082018 174.44 14
736920111112 50.70 5
Store 2 Beer Ales 94922755711 129.60 12
702770082018 107.40 10
736920111112 59.65 5
Store 3 Beer Ales 94922755711 154.00 14
702770082018 137.40 10
736920111112 107.88 12
Store 1 Beer Lagers 702770081011 156.24 12
Store 2 Beer Lagers 702770081011 137.06 11
Store 3 Beer Lagers 702770081011 119.52 8
1) If we want to easily compare sales across stores, we can use df.unstack('Store')
to line everything up side-by-side:
Dollars Units
Store Store 1 Store 2 Store 3 Store 1 Store 2 Store 3
Date Category Subcategory UPC EAN
2018-07-10 Alcohol Liqour 80480280024 154.77 82.08 259.38 7 4 9
Liquor 80432400630 477.68 203.88 239.19 14 6 7
674545000001 139.68 377.13 432.32 4 13 14
Beer Ales 94922755711 65.17 129.60 154.00 7 12 14
702770082018 174.44 107.40 137.40 14 10 10
736920111112 50.70 59.65 107.88 5 5 12
Lagers 702770081011 156.24 137.06 119.52 12 11 8
2) We can also easily do math on multiple columns. For example, df['Dollars'] / df['Units']
will then divide each store's dollars by its units, for every store without multiple operations:
Store Store 1 Store 2 Store 3
Date Category Subcategory UPC EAN
2018-07-10 Alcohol Liqour 80480280024 22.11 20.52 28.82
Liquor 80432400630 34.12 33.98 34.17
674545000001 34.92 29.01 30.88
Beer Ales 94922755711 9.31 10.80 11.00
702770082018 12.46 10.74 13.74
736920111112 10.14 11.93 8.99
Lagers 702770081011 13.02 12.46 14.94
3) If we then want to filter to just specific rows, instead of using the
df[(df[col1] == val1) and (df[col2] == val2) and (df[col3] == val3)]
format, we can instead .xs or .query (yes these work for regular dfs, but it's not very useful). The syntax would instead be:
df.xs((val1, val2, val3), level=(col1, col2, col3))
More examples can be found in this tutorial notebook I put together.
Solution 3:
The alternative to using a multiindex is to store your data using multiple columns of a dataframe. One would expect multiindex to provide a performance boost over naive column storage, but as of Pandas v 1.1.4, that appears not to be the case.
Timinigs
import numpy as np
import pandas as pd
np.random.seed(2020)
inv = pd.DataFrame({
'store_id': np.random.choice(10000, size=10**7),
'product_id': np.random.choice(1000, size=10**7),
'stock': np.random.choice(100, size=10**7),
})
# Create a DataFrame with a multiindex
inv_multi = inv.groupby(['store_id', 'product_id'])[['stock']].agg('sum')
print(inv_multi)
stock
store_id product_id
0 2 48
4 18
5 58
7 149
8 158
... ...
9999 992 132
995 121
996 105
998 99
999 16
[6321869 rows x 1 columns]
# Create a DataFrame without a multiindex
inv_cols = inv_multi.reset_index()
print(inv_cols)
store_id product_id stock
0 0 2 48
1 0 4 18
2 0 5 58
3 0 7 149
4 0 8 158
... ... ... ...
6321864 9999 992 132
6321865 9999 995 121
6321866 9999 996 105
6321867 9999 998 99
6321868 9999 999 16
[6321869 rows x 3 columns]
%%timeit
inv_multi.xs(key=100, level='store_id')
10 loops, best of 3: 20.2 ms per loop
%%timeit
inv_cols.loc[inv_cols.store_id == 100]
The slowest run took 8.79 times longer than the fastest. This could mean that an intermediate result is being cached.
100 loops, best of 3: 11.5 ms per loop
%%timeit
inv_multi.xs(key=100, level='product_id')
100 loops, best of 3: 9.08 ms per loop
%%timeit
inv_cols.loc[inv_cols.product_id == 100]
100 loops, best of 3: 12.2 ms per loop
%%timeit
inv_multi.xs(key=(100, 100), level=('store_id', 'product_id'))
10 loops, best of 3: 29.8 ms per loop
%%timeit
inv_cols.loc[(inv_cols.store_id == 100) & (inv_cols.product_id == 100)]
10 loops, best of 3: 28.8 ms per loop
Conclusion
The benefits from using a MultiIndex are about syntactic sugar, self-documenting data, and small conveniences from functions like unstack()
as mentioned in @ZaxR's answer; Performance is not a benefit, which seems like a real missed opportunity.