Select rows from data.frame ending with a specific character string in R
I'm using R and I have a data.frame with nearly 2,000 entries that looks as follows:
> head(PVs,15)
LogFreq Word PhonCV FreqDev
1593 140 was CVC 5.480774
482 139 had CVC 5.438114
1681 138 zou CVVC 5.395454
1662 137 zei CVV 5.352794
1619 136 werd CVCC 5.310134
1592 135 waren CVV-CV 5.267474
620 134 kon CVC 5.224814
646 133 kwam CCVC 5.182154
483 132 hadden CVC-CV 5.139494
436 131 ging CVC 5.096834
734 130 moest CVVCC 5.054174
1171 129 stond CCVCC 5.011514
1654 128 zag CVC 4.968854
1620 127 werden CVC-CV 4.926194
1683 126 zouden CVV-CV 4.883534
What I want to do is to create a new data.frame that is equal to PVs, except that all entries having as a member of the "Word" column a string of character that does NOT end in either "te" or "de" removed. i.e. All words not ending in either "de" or "te" should be removed from the data.frame.
I know how to slectively remove entries from data.frames using logical operators, but those work when you're setting numeric criteria. I think to do this I need to use regular expressions, but sadly R is the only programming language I "know", so I'm far from knowing what type of code to use here.
I appreciate your help. Thanks in advance.
Solution 1:
Method 1
You can use grepl
with an appropraite regular expression. Consider the following:
x <- c("blank","wade","waste","rubbish","dedekind","bated")
grepl("^.+(de|te)$",x)
[1] FALSE TRUE TRUE FALSE FALSE FALSE
The regular expression says begin (^
) with anything any number of times (.+
) and then find either de or te ((de|te)
) then end ($
).
So for your data.frame try,
subset(PVs,grepl("^.+(de|te)$",Word))
Method 2
To avoid the regexp method you can use a substr
method instead.
# substr the last two characters and test
substr(x,nchar(x)-1,nchar(x)) %in% c("de","te")
[1] FALSE TRUE TRUE FALSE FALSE FALSE
So try:
subset(PVs,substr(Word,nchar(Word)-1,nchar(Word)) %in% c("de","te"))
Solution 2:
I modified the data a bit so that there were words that ended in te or de.
> PV
LogFreq Word PhonCV FreqDev
1593 140 blahte CVC 5.480774
482 139 had CVC 5.438114
1681 138 aaaade CVVC 5.395454
1662 137 zei CVV 5.352794
1619 136 werd CVCC 5.310134
1592 135 waren CVV-CV 5.267474
620 134 kon CVC 5.224814
646 133 kwamde CCVC 5.182154
483 132 hadden CVC-CV 5.139494
436 131 ging CVC 5.096834
734 130 moeste CVVCC 5.054174
1171 129 stond CCVCC 5.011514
1654 128 zagde CVC 4.968854
1620 127 werden CVC-CV 4.926194
1683 126 zouden CVV-CV 4.883534
# Add a column to PV that you can visually check the regular expression matches.
PV$Match <- grepl(pattern = "(de|te)$", PV$Word)
# Subset PV data frame to show only TRUE matches
PV <- PV[PV$Match == FALSE, ]
The result is shown below
LogFreq Word PhonCV FreqDev Match
482 139 had CVC 5.438114 FALSE
1662 137 zei CVV 5.352794 FALSE
1619 136 werd CVCC 5.310134 FALSE
1592 135 waren CVV-CV 5.267474 FALSE
620 134 kon CVC 5.224814 FALSE
483 132 hadden CVC-CV 5.139494 FALSE
436 131 ging CVC 5.096834 FALSE
1171 129 stond CCVCC 5.011514 FALSE
1620 127 werden CVC-CV 4.926194 FALSE
1683 126 zouden CVV-CV 4.883534 FALSE
Solution 3:
Using grep
grep -xvE '.{17}(de|te).*' file.txt