Indefinite Integral for $\cos x/(1+x^2)$

I have been working on the indefinite integral of $\cos x/(1+x^2)$.

$$ \int\frac{\cos x}{1+x^2}\;dx\text{ or } \int\frac{\sin x}{1+x^2}\;dx $$

are they unsolvable(impossible to solve) or is there a way to solve them even by approximation?

Thank you very much.


Solution 1:

There is no elementary antiderivative for either of those.

It's actually easier to deal with $e^{ix}/(1+x^2)$. As a corollary of a theorem of Liouville, if $f e^g$ has an elementary antiderivative, where $f$ and $g$ are rational functions and $g$ is not constant, then it has an antiderivative of the form $h e^g$ where $h$ is a rational function. For this to be an antiderivative of $f e^g$, what we need is $h' + h g' = f$.

Now with $f = 1/(1+x^2)$ and $g = ix$, the condition is $h' + i h = 1/(1+x^2)$. The right side has a pole of order $1$ at $x=i$. In order for the left side to have a pole there, $h$ must have a pole there, but wherever $h$ has a pole of order $k$, $h'$ has a pole of order $k+1$, so the left side can never have a pole of order $1$.

Solution 2:

$\int\dfrac{\sin x}{1+x^2}dx$

$=\int\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{2n+1}}{(2n+1)!(x^2+1)}dx$

$=\int\sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{2n}}{2(2n+1)!(x^2+1)}d(x^2+1)$

$=\int\sum\limits_{n=0}^\infty\dfrac{(-1)^n(x^2+1-1)^n}{2(2n+1)!(x^2+1)}d(x^2+1)$

$=\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^nC_k^n(-1)^{n-k}(x^2+1)^k}{2(2n+1)!(x^2+1)}d(x^2+1)$

$=\int\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}d(x^2+1)$

$=\int\left(\dfrac{1}{2(x^2+1)}+\sum\limits_{n=1}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}\right)d(x^2+1)$

$=\int\left(\dfrac{1}{2(x^2+1)}+\sum\limits_{n=1}^\infty\dfrac{1}{2(2n+1)!(x^2+1)}+\sum\limits_{n=1}^\infty\sum\limits_{k=1}^n\dfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}\right)d(x^2+1)$

$=\int\left(\sum\limits_{n=0}^\infty\dfrac{1}{2(2n+1)!(x^2+1)}+\sum\limits_{n=1}^\infty\sum\limits_{k=1}^n\dfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}\right)d(x^2+1)$

$=\int\left(\dfrac{\sinh1}{2(x^2+1)}+\sum\limits_{n=1}^\infty\sum\limits_{k=1}^n\dfrac{(-1)^kn!(x^2+1)^{k-1}}{2(2n+1)!k!(n-k)!}\right)d(x^2+1)$

$=\dfrac{\sinh1\ln(x^2+1)}{2}+\sum\limits_{n=1}^\infty\sum\limits_{k=1}^n\dfrac{(-1)^kn!(x^2+1)^k}{2(2n+1)!k!k(n-k)!}+C$