CASCADE DELETE just once
I have a Postgresql database on which I want to do a few cascading deletes. However, the tables aren't set up with the ON DELETE CASCADE rule. Is there any way I can perform a delete and tell Postgresql to cascade it just this once? Something equivalent to
DELETE FROM some_table CASCADE;
The answers to this older question make it seem like no such solution exists, but I figured I'd ask this question explicitly just to be sure.
Solution 1:
No. To do it just once you would simply write the delete statement for the table you want to cascade.
DELETE FROM some_child_table WHERE some_fk_field IN (SELECT some_id FROM some_Table);
DELETE FROM some_table;
Solution 2:
If you really want DELETE FROM some_table CASCADE;
which means "remove all rows from table some_table
", you can use TRUNCATE
instead of DELETE
and CASCADE
is always supported. However, if you want to use selective delete with a where
clause, TRUNCATE
is not good enough.
USE WITH CARE - This will drop all rows of all tables which have a foreign key constraint on some_table
and all tables that have constraints on those tables, etc.
Postgres supports CASCADE
with TRUNCATE command:
TRUNCATE some_table CASCADE;
Handily this is transactional (i.e. can be rolled back), although it is not fully isolated from other concurrent transactions, and has several other caveats. Read the docs for details.
Solution 3:
I wrote a (recursive) function to delete any row based on its primary key. I wrote this because I did not want to create my constraints as "on delete cascade". I wanted to be able to delete complex sets of data (as a DBA) but not allow my programmers to be able to cascade delete without thinking through all of the repercussions.
I'm still testing out this function, so there may be bugs in it -- but please don't try it if your DB has multi column primary (and thus foreign) keys. Also, the keys all have to be able to be represented in string form, but it could be written in a way that doesn't have that restriction. I use this function VERY SPARINGLY anyway, I value my data too much to enable the cascading constraints on everything.
Basically this function is passed in the schema, table name, and primary value (in string form), and it will start by finding any foreign keys on that table and makes sure data doesn't exist-- if it does, it recursively calls itsself on the found data. It uses an array of data already marked for deletion to prevent infinite loops. Please test it out and let me know how it works for you. Note: It's a little slow.
I call it like so:
select delete_cascade('public','my_table','1');
create or replace function delete_cascade(p_schema varchar, p_table varchar, p_key varchar, p_recursion varchar[] default null)
returns integer as $$
declare
rx record;
rd record;
v_sql varchar;
v_recursion_key varchar;
recnum integer;
v_primary_key varchar;
v_rows integer;
begin
recnum := 0;
select ccu.column_name into v_primary_key
from
information_schema.table_constraints tc
join information_schema.constraint_column_usage AS ccu ON ccu.constraint_name = tc.constraint_name and ccu.constraint_schema=tc.constraint_schema
and tc.constraint_type='PRIMARY KEY'
and tc.table_name=p_table
and tc.table_schema=p_schema;
for rx in (
select kcu.table_name as foreign_table_name,
kcu.column_name as foreign_column_name,
kcu.table_schema foreign_table_schema,
kcu2.column_name as foreign_table_primary_key
from information_schema.constraint_column_usage ccu
join information_schema.table_constraints tc on tc.constraint_name=ccu.constraint_name and tc.constraint_catalog=ccu.constraint_catalog and ccu.constraint_schema=ccu.constraint_schema
join information_schema.key_column_usage kcu on kcu.constraint_name=ccu.constraint_name and kcu.constraint_catalog=ccu.constraint_catalog and kcu.constraint_schema=ccu.constraint_schema
join information_schema.table_constraints tc2 on tc2.table_name=kcu.table_name and tc2.table_schema=kcu.table_schema
join information_schema.key_column_usage kcu2 on kcu2.constraint_name=tc2.constraint_name and kcu2.constraint_catalog=tc2.constraint_catalog and kcu2.constraint_schema=tc2.constraint_schema
where ccu.table_name=p_table and ccu.table_schema=p_schema
and TC.CONSTRAINT_TYPE='FOREIGN KEY'
and tc2.constraint_type='PRIMARY KEY'
)
loop
v_sql := 'select '||rx.foreign_table_primary_key||' as key from '||rx.foreign_table_schema||'.'||rx.foreign_table_name||'
where '||rx.foreign_column_name||'='||quote_literal(p_key)||' for update';
--raise notice '%',v_sql;
--found a foreign key, now find the primary keys for any data that exists in any of those tables.
for rd in execute v_sql
loop
v_recursion_key=rx.foreign_table_schema||'.'||rx.foreign_table_name||'.'||rx.foreign_column_name||'='||rd.key;
if (v_recursion_key = any (p_recursion)) then
--raise notice 'Avoiding infinite loop';
else
--raise notice 'Recursing to %,%',rx.foreign_table_name, rd.key;
recnum:= recnum +delete_cascade(rx.foreign_table_schema::varchar, rx.foreign_table_name::varchar, rd.key::varchar, p_recursion||v_recursion_key);
end if;
end loop;
end loop;
begin
--actually delete original record.
v_sql := 'delete from '||p_schema||'.'||p_table||' where '||v_primary_key||'='||quote_literal(p_key);
execute v_sql;
get diagnostics v_rows= row_count;
--raise notice 'Deleting %.% %=%',p_schema,p_table,v_primary_key,p_key;
recnum:= recnum +v_rows;
exception when others then recnum=0;
end;
return recnum;
end;
$$
language PLPGSQL;
Solution 4:
If I understand correctly, you should be able to do what you want by dropping the foreign key constraint, adding a new one (which will cascade), doing your stuff, and recreating the restricting foreign key constraint.
For example:
testing=# create table a (id integer primary key);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "a_pkey" for table "a"
CREATE TABLE
testing=# create table b (id integer references a);
CREATE TABLE
-- put some data in the table
testing=# insert into a values(1);
INSERT 0 1
testing=# insert into a values(2);
INSERT 0 1
testing=# insert into b values(2);
INSERT 0 1
testing=# insert into b values(1);
INSERT 0 1
-- restricting works
testing=# delete from a where id=1;
ERROR: update or delete on table "a" violates foreign key constraint "b_id_fkey" on table "b"
DETAIL: Key (id)=(1) is still referenced from table "b".
-- find the name of the constraint
testing=# \d b;
Table "public.b"
Column | Type | Modifiers
--------+---------+-----------
id | integer |
Foreign-key constraints:
"b_id_fkey" FOREIGN KEY (id) REFERENCES a(id)
-- drop the constraint
testing=# alter table b drop constraint b_a_id_fkey;
ALTER TABLE
-- create a cascading one
testing=# alter table b add FOREIGN KEY (id) references a(id) on delete cascade;
ALTER TABLE
testing=# delete from a where id=1;
DELETE 1
testing=# select * from a;
id
----
2
(1 row)
testing=# select * from b;
id
----
2
(1 row)
-- it works, do your stuff.
-- [stuff]
-- recreate the previous state
testing=# \d b;
Table "public.b"
Column | Type | Modifiers
--------+---------+-----------
id | integer |
Foreign-key constraints:
"b_id_fkey" FOREIGN KEY (id) REFERENCES a(id) ON DELETE CASCADE
testing=# alter table b drop constraint b_id_fkey;
ALTER TABLE
testing=# alter table b add FOREIGN KEY (id) references a(id) on delete restrict;
ALTER TABLE
Of course, you should abstract stuff like that into a procedure, for the sake of your mental health.