Separation of business logic and data access in django
It seems like you are asking about the difference between the data model and the domain model – the latter is where you can find the business logic and entities as perceived by your end user, the former is where you actually store your data.
Furthermore, I've interpreted the 3rd part of your question as: how to notice failure to keep these models separate.
These are two very different concepts and it's always hard to keep them separate. However, there are some common patterns and tools that can be used for this purpose.
About the Domain Model
The first thing you need to recognize is that your domain model is not really about data; it is about actions and questions such as "activate this user", "deactivate this user", "which users are currently activated?", and "what is this user's name?". In classical terms: it's about queries and commands.
Thinking in Commands
Let's start by looking at the commands in your example: "activate this user" and "deactivate this user". The nice thing about commands is that they can easily be expressed by small given-when-then scenario's:
given an inactive user
when the admin activates this user
then the user becomes active
and a confirmation e-mail is sent to the user
and an entry is added to the system log
(etc. etc.)
Such scenario's are useful to see how different parts of your infrastructure can be affected by a single command – in this case your database (some kind of 'active' flag), your mail server, your system log, etc.
Such scenario's also really help you in setting up a Test Driven Development environment.
And finally, thinking in commands really helps you create a task-oriented application. Your users will appreciate this :-)
Expressing Commands
Django provides two easy ways of expressing commands; they are both valid options and it is not unusual to mix the two approaches.
The service layer
The service module has already been described by @Hedde. Here you define a separate module and each command is represented as a function.
services.py
def activate_user(user_id):
user = User.objects.get(pk=user_id)
# set active flag
user.active = True
user.save()
# mail user
send_mail(...)
# etc etc
Using forms
The other way is to use a Django Form for each command. I prefer this approach, because it combines multiple closely related aspects:
- execution of the command (what does it do?)
- validation of the command parameters (can it do this?)
- presentation of the command (how can I do this?)
forms.py
class ActivateUserForm(forms.Form):
user_id = IntegerField(widget = UsernameSelectWidget, verbose_name="Select a user to activate")
# the username select widget is not a standard Django widget, I just made it up
def clean_user_id(self):
user_id = self.cleaned_data['user_id']
if User.objects.get(pk=user_id).active:
raise ValidationError("This user cannot be activated")
# you can also check authorizations etc.
return user_id
def execute(self):
"""
This is not a standard method in the forms API; it is intended to replace the
'extract-data-from-form-in-view-and-do-stuff' pattern by a more testable pattern.
"""
user_id = self.cleaned_data['user_id']
user = User.objects.get(pk=user_id)
# set active flag
user.active = True
user.save()
# mail user
send_mail(...)
# etc etc
Thinking in Queries
You example did not contain any queries, so I took the liberty of making up a few useful queries. I prefer to use the term "question", but queries is the classical terminology. Interesting queries are: "What is the name of this user?", "Can this user log in?", "Show me a list of deactivated users", and "What is the geographical distribution of deactivated users?"
Before embarking on answering these queries, you should always ask yourself this question, is this:
- a presentational query just for my templates, and/or
- a business logic query tied to executing my commands, and/or
- a reporting query.
Presentational queries are merely made to improve the user interface. The answers to business logic queries directly affect the execution of your commands. Reporting queries are merely for analytical purposes and have looser time constraints. These categories are not mutually exclusive.
The other question is: "do I have complete control over the answers?" For example, when querying the user's name (in this context) we do not have any control over the outcome, because we rely on an external API.
Making Queries
The most basic query in Django is the use of the Manager object:
User.objects.filter(active=True)
Of course, this only works if the data is actually represented in your data model. This is not always the case. In those cases, you can consider the options below.
Custom tags and filters
The first alternative is useful for queries that are merely presentational: custom tags and template filters.
template.html
<h1>Welcome, {{ user|friendly_name }}</h1>
template_tags.py
@register.filter
def friendly_name(user):
return remote_api.get_cached_name(user.id)
Query methods
If your query is not merely presentational, you could add queries to your services.py (if you are using that), or introduce a queries.py module:
queries.py
def inactive_users():
return User.objects.filter(active=False)
def users_called_publysher():
for user in User.objects.all():
if remote_api.get_cached_name(user.id) == "publysher":
yield user
Proxy models
Proxy models are very useful in the context of business logic and reporting. You basically define an enhanced subset of your model. You can override a Manager’s base QuerySet by overriding the Manager.get_queryset()
method.
models.py
class InactiveUserManager(models.Manager):
def get_queryset(self):
query_set = super(InactiveUserManager, self).get_queryset()
return query_set.filter(active=False)
class InactiveUser(User):
"""
>>> for user in InactiveUser.objects.all():
… assert user.active is False
"""
objects = InactiveUserManager()
class Meta:
proxy = True
Query models
For queries that are inherently complex, but are executed quite often, there is the possibility of query models. A query model is a form of denormalization where relevant data for a single query is stored in a separate model. The trick of course is to keep the denormalized model in sync with the primary model. Query models can only be used if changes are entirely under your control.
models.py
class InactiveUserDistribution(models.Model):
country = CharField(max_length=200)
inactive_user_count = IntegerField(default=0)
The first option is to update these models in your commands. This is very useful if these models are only changed by one or two commands.
forms.py
class ActivateUserForm(forms.Form):
# see above
def execute(self):
# see above
query_model = InactiveUserDistribution.objects.get_or_create(country=user.country)
query_model.inactive_user_count -= 1
query_model.save()
A better option would be to use custom signals. These signals are of course emitted by your commands. Signals have the advantage that you can keep multiple query models in sync with your original model. Furthermore, signal processing can be offloaded to background tasks, using Celery or similar frameworks.
signals.py
user_activated = Signal(providing_args = ['user'])
user_deactivated = Signal(providing_args = ['user'])
forms.py
class ActivateUserForm(forms.Form):
# see above
def execute(self):
# see above
user_activated.send_robust(sender=self, user=user)
models.py
class InactiveUserDistribution(models.Model):
# see above
@receiver(user_activated)
def on_user_activated(sender, **kwargs):
user = kwargs['user']
query_model = InactiveUserDistribution.objects.get_or_create(country=user.country)
query_model.inactive_user_count -= 1
query_model.save()
Keeping it clean
When using this approach, it becomes ridiculously easy to determine if your code stays clean. Just follow these guidelines:
- Does my model contain methods that do more than managing database state? You should extract a command.
- Does my model contain properties that do not map to database fields? You should extract a query.
- Does my model reference infrastructure that is not my database (such as mail)? You should extract a command.
The same goes for views (because views often suffer from the same problem).
- Does my view actively manage database models? You should extract a command.
Some References
Django documentation: proxy models
Django documentation: signals
Architecture: Domain Driven Design
I usually implement a service layer in between views and models. This acts like your project's API and gives you a good helicopter view of what is going on. I inherited this practice from a colleague of mine that uses this layering technique a lot with Java projects (JSF), e.g:
models.py
class Book:
author = models.ForeignKey(User)
title = models.CharField(max_length=125)
class Meta:
app_label = "library"
services.py
from library.models import Book
def get_books(limit=None, **filters):
""" simple service function for retrieving books can be widely extended """
return Book.objects.filter(**filters)[:limit] # list[:None] will return the entire list
views.py
from library.services import get_books
class BookListView(ListView):
""" simple view, e.g. implement a _build and _apply filters function """
queryset = get_books()
Mind you, I usually take models, views and services to module level and separate even further depending on the project's size
First of all, Don't repeat yourself.
Then, please be careful not to overengineer, sometimes it is just a waste of time, and makes someone lose focus on what is important. Review the zen of python from time to time.
Take a look at active projects
- more people = more need to organize properly
- the django repository they have a straightforward structure.
- the pip repository they have a straigtforward directory structure.
-
the fabric repository is also a good one to look at.
- you can place all your models under
yourapp/models/logicalgroup.py
- you can place all your models under
- e.g
User
,Group
and related models can go underyourapp/models/users.py
- e.g
Poll
,Question
,Answer
... could go underyourapp/models/polls.py
- load what you need in
__all__
inside ofyourapp/models/__init__.py
More about MVC
- model is your data
- this includes your actual data
- this also includes your session / cookie / cache / fs / index data
- user interacts with controller to manipulate the model
- this could be an API, or a view that saves/updates your data
- this can be tuned with
request.GET
/request.POST
...etc - think paging or filtering too.
- the data updates the view
- the templates take the data and format it accordingly
- APIs even w/o templates are part of the view; e.g.
tastypie
orpiston
- this should also account for the middleware.
Take advantage of middleware / templatetags
- If you need some work to be done for each request, middleware is one way to go.
- e.g. adding timestamps
- e.g. updating metrics about page hits
- e.g. populating a cache
- If you have snippets of code that always reoccur for formatting objects, templatetags are good.
- e.g. active tab / url breadcrumbs
Take advantage of model managers
- creating
User
can go in aUserManager(models.Manager)
. - gory details for instances should go on the
models.Model
. - gory details for
queryset
could go in amodels.Manager
. - you might want to create a
User
one at a time, so you may think that it should live on the model itself, but when creating the object, you probably don't have all the details:
Example:
class UserManager(models.Manager):
def create_user(self, username, ...):
# plain create
def create_superuser(self, username, ...):
# may set is_superuser field.
def activate(self, username):
# may use save() and send_mail()
def activate_in_bulk(self, queryset):
# may use queryset.update() instead of save()
# may use send_mass_mail() instead of send_mail()
Make use of forms where possible
A lot of boilerplate code can be eliminated if you have forms that map to a model. The ModelForm documentation
is pretty good. Separating code for forms from model code can be good if you have a lot of customization (or sometimes avoid cyclic import errors for more advanced uses).
Use management commands when possible
- e.g.
yourapp/management/commands/createsuperuser.py
- e.g.
yourapp/management/commands/activateinbulk.py
if you have business logic, you can separate it out
-
django.contrib.auth
uses backends, just like db has a backend...etc. - add a
setting
for your business logic (e.g.AUTHENTICATION_BACKENDS
) - you could use
django.contrib.auth.backends.RemoteUserBackend
- you could use
yourapp.backends.remote_api.RemoteUserBackend
- you could use
yourapp.backends.memcached.RemoteUserBackend
- delegate the difficult business logic to the backend
- make sure to set the expectation right on the input/output.
- changing business logic is as simple as changing a setting :)
backend example:
class User(db.Models):
def get_present_name(self):
# property became not deterministic in terms of database
# data is taken from another service by api
return remote_api.request_user_name(self.uid) or 'Anonymous'
could become:
class User(db.Models):
def get_present_name(self):
for backend in get_backends():
try:
return backend.get_present_name(self)
except: # make pylint happy.
pass
return None
more about design patterns
- there's already a good question about design patterns
- a very good video about practical design patterns
- django's backends are obvious use of delegation design pattern.
more about interface boundaries
- Is the code you want to use really part of the models? ->
yourapp.models
- Is the code part of business logic? ->
yourapp.vendor
- Is the code part of generic tools / libs? ->
yourapp.libs
- Is the code part of business logic libs? ->
yourapp.libs.vendor
oryourapp.vendor.libs
- Here is a good one: can you test your code independently?
- yes, good :)
- no, you may have an interface problem
- when there is clear separation, unittest should be a breeze with the use of mocking
- Is the separation logical?
- yes, good :)
- no, you may have trouble testing those logical concepts separately.
- Do you think you will need to refactor when you get 10x more code?
- yes, no good, no bueno, refactor could be a lot of work
- no, that's just awesome!
In short, you could have
yourapp/core/backends.py
yourapp/core/models/__init__.py
yourapp/core/models/users.py
yourapp/core/models/questions.py
yourapp/core/backends.py
yourapp/core/forms.py
yourapp/core/handlers.py
yourapp/core/management/commands/__init__.py
yourapp/core/management/commands/closepolls.py
yourapp/core/management/commands/removeduplicates.py
yourapp/core/middleware.py
yourapp/core/signals.py
yourapp/core/templatetags/__init__.py
yourapp/core/templatetags/polls_extras.py
yourapp/core/views/__init__.py
yourapp/core/views/users.py
yourapp/core/views/questions.py
yourapp/core/signals.py
yourapp/lib/utils.py
yourapp/lib/textanalysis.py
yourapp/lib/ratings.py
yourapp/vendor/backends.py
yourapp/vendor/morebusinesslogic.py
yourapp/vendor/handlers.py
yourapp/vendor/middleware.py
yourapp/vendor/signals.py
yourapp/tests/test_polls.py
yourapp/tests/test_questions.py
yourapp/tests/test_duplicates.py
yourapp/tests/test_ratings.py
or anything else that helps you; finding the interfaces you need and the boundaries will help you.
Django employs a slightly modified kind of MVC. There's no concept of a "controller" in Django. The closest proxy is a "view", which tends to cause confusion with MVC converts because in MVC a view is more like Django's "template".
In Django, a "model" is not merely a database abstraction. In some respects, it shares duty with the Django's "view" as the controller of MVC. It holds the entirety of behavior associated with an instance. If that instance needs to interact with an external API as part of it's behavior, then that's still model code. In fact, models aren't required to interact with the database at all, so you could conceivable have models that entirely exist as an interactive layer to an external API. It's a much more free concept of a "model".