Scala actors: receive vs react
First, each actor waiting on receive
is occupying a thread. If it never receives anything, that thread will never do anything. An actor on react
does not occupy any thread until it receives something. Once it receives something, a thread gets allocated to it, and it is initialized in it.
Now, the initialization part is important. A receiving thread is expected to return something, a reacting thread is not. So the previous stack state at the end of the last react
can be, and is, wholly discarded. Not needing to either save or restore the stack state makes the thread faster to start.
There are various performance reasons why you might want one or other. As you know, having too many threads in Java is not a good idea. On the other hand, because you have to attach an actor to a thread before it can react
, it is faster to receive
a message than react
to it. So if you have actors that receive many messages but do very little with it, the additional delay of react
might make it too slow for your purposes.
The answer is "yes" - if your actors are not blocking on anything in your code and you are using react
, then you can run your "concurrent" program within a single thread (try setting the system property actors.maxPoolSize
to find out).
One of the more obvious reasons why it is necessary to discard the call stack is that otherwise the loop
method would end in a StackOverflowError
. As it is, the framework rather cleverly ends a react
by throwing a SuspendActorException
, which is caught by the looping code which then runs the react
again via the andThen
method.
Have a look at the mkBody
method in Actor
and then the seq
method to see how the loop reschedules itself - terribly clever stuff!
Those statements of "discarding the stack" confused me also for a while and I think I get it now and this is my understanding now. In case of "receive" there is a dedicated thread blocking on the message (using object.wait() on a monitor) and this means that the complete thread stack is available and ready to continue from the point of "waiting" on receiving a message. For example if you had the following code
def a = 10;
while (! done) {
receive {
case msg => println("MESSAGE RECEIVED: " + msg)
}
println("after receive and printing a " + a)
}
the thread would wait in the receive call until the message is received and then would continue on and print the "after receive and printing a 10" message and with the value of "10" which is in the stack frame before the thread blocked.
In case of react there is no such dedicated thread, the whole method body of the react method is captured as a closure and is executed by some arbitrary thread on the corresponding actor receiving a message. This means only those statements that can be captured as a closure alone will be executed and that's where the return type of "Nothing" comes to play. Consider the following code
def a = 10;
while (! done) {
react {
case msg => println("MESSAGE RECEIVED: " + msg)
}
println("after react and printing a " + a)
}
If react had a return type of void, it would mean that it is legal to have statements after the "react" call ( in the example the println statement that prints the message "after react and printing a 10"), but in reality that would never get executed as only the body of the "react" method is captured and sequenced for execution later (on the arrival of a message). Since the contract of react has the return type of "Nothing" there cannot be any statements following react, and there for there is no reason to maintain the stack. In the example above variable "a" would not have to be maintained as the statements after the react calls are not executed at all. Note that all the needed variables by the body of react is already be captured as a closure, so it can execute just fine.
The java actor framework Kilim actually does the stack maintenance by saving the stack which gets unrolled on the react getting a message.
Just to have it here:
Event-Based Programming without Inversion of Control
These papers are linked from the scala api for Actor and provide the theoretical framework for the actor implementation. This includes why react may never return.