Asynchronous method call in Python?

Something like:

import threading

thr = threading.Thread(target=foo, args=(), kwargs={})
thr.start() # Will run "foo"
....
thr.is_alive() # Will return whether foo is running currently
....
thr.join() # Will wait till "foo" is done

See the documentation at https://docs.python.org/library/threading.html for more details.


You can use the multiprocessing module added in Python 2.6. You can use pools of processes and then get results asynchronously with:

apply_async(func[, args[, kwds[, callback]]])

E.g.:

from multiprocessing import Pool

def f(x):
    return x*x

if __name__ == '__main__':
    pool = Pool(processes=1)              # Start a worker processes.
    result = pool.apply_async(f, [10], callback) # Evaluate "f(10)" asynchronously calling callback when finished.

This is only one alternative. This module provides lots of facilities to achieve what you want. Also it will be really easy to make a decorator from this.


As of Python 3.5, you can use enhanced generators for async functions.

import asyncio
import datetime

Enhanced generator syntax:

@asyncio.coroutine
def display_date(loop):
    end_time = loop.time() + 5.0
    while True:
        print(datetime.datetime.now())
        if (loop.time() + 1.0) >= end_time:
            break
        yield from asyncio.sleep(1)


loop = asyncio.get_event_loop()
# Blocking call which returns when the display_date() coroutine is done
loop.run_until_complete(display_date(loop))
loop.close()

New async/await syntax:

async def display_date(loop):
    end_time = loop.time() + 5.0
    while True:
        print(datetime.datetime.now())
        if (loop.time() + 1.0) >= end_time:
            break
        await asyncio.sleep(1)


loop = asyncio.get_event_loop()
# Blocking call which returns when the display_date() coroutine is done
loop.run_until_complete(display_date(loop))
loop.close()

It's not in the language core, but a very mature library that does what you want is Twisted. It introduces the Deferred object, which you can attach callbacks or error handlers ("errbacks") to. A Deferred is basically a "promise" that a function will have a result eventually.


You can implement a decorator to make your functions asynchronous, though that's a bit tricky. The multiprocessing module is full of little quirks and seemingly arbitrary restrictions – all the more reason to encapsulate it behind a friendly interface, though.

from inspect import getmodule
from multiprocessing import Pool


def async(decorated):
    r'''Wraps a top-level function around an asynchronous dispatcher.

        when the decorated function is called, a task is submitted to a
        process pool, and a future object is returned, providing access to an
        eventual return value.

        The future object has a blocking get() method to access the task
        result: it will return immediately if the job is already done, or block
        until it completes.

        This decorator won't work on methods, due to limitations in Python's
        pickling machinery (in principle methods could be made pickleable, but
        good luck on that).
    '''
    # Keeps the original function visible from the module global namespace,
    # under a name consistent to its __name__ attribute. This is necessary for
    # the multiprocessing pickling machinery to work properly.
    module = getmodule(decorated)
    decorated.__name__ += '_original'
    setattr(module, decorated.__name__, decorated)

    def send(*args, **opts):
        return async.pool.apply_async(decorated, args, opts)

    return send

The code below illustrates usage of the decorator:

@async
def printsum(uid, values):
    summed = 0
    for value in values:
        summed += value

    print("Worker %i: sum value is %i" % (uid, summed))

    return (uid, summed)


if __name__ == '__main__':
    from random import sample

    # The process pool must be created inside __main__.
    async.pool = Pool(4)

    p = range(0, 1000)
    results = []
    for i in range(4):
        result = printsum(i, sample(p, 100))
        results.append(result)

    for result in results:
        print("Worker %i: sum value is %i" % result.get())

In a real-world case I would ellaborate a bit more on the decorator, providing some way to turn it off for debugging (while keeping the future interface in place), or maybe a facility for dealing with exceptions; but I think this demonstrates the principle well enough.