How do I remove code duplication between similar const and non-const member functions?

Let's say I have the following class X where I want to return access to an internal member:

class Z
{
    // details
};

class X
{
    std::vector<Z> vecZ;

public:
    Z& Z(size_t index)
    {
        // massive amounts of code for validating index

        Z& ret = vecZ[index];

        // even more code for determining that the Z instance
        // at index is *exactly* the right sort of Z (a process
        // which involves calculating leap years in which
        // religious holidays fall on Tuesdays for
        // the next thousand years or so)

        return ret;
    }
    const Z& Z(size_t index) const
    {
        // identical to non-const X::Z(), except printed in
        // a lighter shade of gray since
        // we're running low on toner by this point
    }
};

The two member functions X::Z() and X::Z() const have identical code inside the braces. This is duplicate code and can cause maintenance problems for long functions with complex logic.

Is there a way to avoid this code duplication?


For a detailed explanation, please see the heading "Avoid Duplication in const and Non-const Member Function," on p. 23, in Item 3 "Use const whenever possible," in Effective C++, 3d ed by Scott Meyers, ISBN-13: 9780321334879.

alt text

Here's Meyers' solution (simplified):

struct C {
  const char & get() const {
    return c;
  }
  char & get() {
    return const_cast<char &>(static_cast<const C &>(*this).get());
  }
  char c;
};

The two casts and function call may be ugly, but it's correct in a non-const method as that implies the object was not const to begin with. (Meyers has a thorough discussion of this.)


C++17 has updated the best answer for this question:

T const & f() const {
    return something_complicated();
}
T & f() {
    return const_cast<T &>(std::as_const(*this).f());
}

This has the advantages that it:

  • Is obvious what is going on
  • Has minimal code overhead -- it fits in a single line
  • Is hard to get wrong (can only cast away volatile by accident, but volatile is a rare qualifier)

If you want to go the full deduction route then that can be accomplished by having a helper function

template<typename T>
constexpr T & as_mutable(T const & value) noexcept {
    return const_cast<T &>(value);
}
template<typename T>
constexpr T * as_mutable(T const * value) noexcept {
    return const_cast<T *>(value);
}
template<typename T>
constexpr T * as_mutable(T * value) noexcept {
    return value;
}
template<typename T>
void as_mutable(T const &&) = delete;

Now you can't even mess up volatile, and the usage looks like

decltype(auto) f() const {
    return something_complicated();
}
decltype(auto) f() {
    return as_mutable(std::as_const(*this).f());
}

Yes, it is possible to avoid the code duplication. You need to use the const member function to have the logic and have the non-const member function call the const member function and re-cast the return value to a non-const reference (or pointer if the functions returns a pointer):

class X
{
   std::vector<Z> vecZ;

public:
   const Z& z(size_t index) const
   {
      // same really-really-really long access 
      // and checking code as in OP
      // ...
      return vecZ[index];
   }

   Z& z(size_t index)
   {
      // One line. One ugly, ugly line - but just one line!
      return const_cast<Z&>( static_cast<const X&>(*this).z(index) );
   }

 #if 0 // A slightly less-ugly version
   Z& Z(size_t index)
   {
      // Two lines -- one cast. This is slightly less ugly but takes an extra line.
      const X& constMe = *this;
      return const_cast<Z&>( constMe.z(index) );
   }
 #endif
};

NOTE: It is important that you do NOT put the logic in the non-const function and have the const-function call the non-const function -- it may result in undefined behavior. The reason is that a constant class instance gets cast as a non-constant instance. The non-const member function may accidentally modify the class, which the C++ standard states will result in undefined behavior.


I think Scott Meyers' solution can be improved in C++11 by using a tempate helper function. This makes the intent much more obvious and can be reused for many other getters.

template <typename T>
struct NonConst {typedef T type;};
template <typename T>
struct NonConst<T const> {typedef T type;}; //by value
template <typename T>
struct NonConst<T const&> {typedef T& type;}; //by reference
template <typename T>
struct NonConst<T const*> {typedef T* type;}; //by pointer
template <typename T>
struct NonConst<T const&&> {typedef T&& type;}; //by rvalue-reference

template<typename TConstReturn, class TObj, typename... TArgs>
typename NonConst<TConstReturn>::type likeConstVersion(
   TObj const* obj,
   TConstReturn (TObj::* memFun)(TArgs...) const,
   TArgs&&... args) {
      return const_cast<typename NonConst<TConstReturn>::type>(
         (obj->*memFun)(std::forward<TArgs>(args)...));
}

This helper function can be used the following way.

struct T {
   int arr[100];

   int const& getElement(size_t i) const{
      return arr[i];
   }

   int& getElement(size_t i) {
      return likeConstVersion(this, &T::getElement, i);
   }
};

The first argument is always the this-pointer. The second is the pointer to the member function to call. After that an arbitrary amount of additional arguments can be passed so that they can be forwarded to the function. This needs C++11 because of the variadic templates.


Nice question and nice answers. I have another solution, that uses no casts:

class X {

private:

    std::vector<Z> v;

    template<typename InstanceType>
    static auto get(InstanceType& instance, std::size_t i) -> decltype(instance.get(i)) {
        // massive amounts of code for validating index
        // the instance variable has to be used to access class members
        return instance.v[i];
    }

public:

    const Z& get(std::size_t i) const {
        return get(*this, i);
    }

    Z& get(std::size_t i) {
        return get(*this, i);
    }

};

However, it has the ugliness of requiring a static member and the need of using the instance variable inside it.

I did not consider all the possible (negative) implications of this solution. Please let me know if any.