If $a$ and $b$ are positive integers and $4ab-1 \mid 4a^2-1$ then $ a=b$.

Prove that if $a$ and $b$ are positive integers and $$(4ab-1) \mid (4a^2-1)$$ then $a=b$.

I am stuck with question, no idea. Is there any way to prove this using Polynomial Division Algorithm? Would appreciate any help.


Note that $4ab\equiv 1\pmod {4ab-1}$ and if $4ab-1\mid 4a^2-1$ then $4a^2\equiv 1\pmod{4ab-1}$. So $$b\equiv (4a^2)b=a(4ab) \equiv a\pmod{4ab-1}.$$

Is that possible if $a\neq b$?

Without using modular arithmetic, you can write this as:

$$a-b = b(4a^2-1)-a(4ab-1) $$

So $4ab-1\mid a-b$.


Note $\,\ {\rm mod}\,\ 4ab\!-\!1\!:\,\ \overbrace{(4a)\color{#c00}a\equiv 1\equiv(4a)\color{#c00}b}^{\ \ \ \large \color{#c00}a\, \equiv\, (4a)^{-1}\equiv\,\color{#c00} b}\,\Rightarrow\, \color{#c00}{a\equiv b}\ $ by uniqueness of inverses (of $\,4a\,$ here)


Remark $\ $ For completeness, here is the standard proof of uniqueness of inverses:

$$\ ca\equiv 1\equiv cb \,\Rightarrow\, a\equiv a(cb)\equiv (ac)b\equiv b\quad\ \ $$

The OP Theorem becomes obvious when expressed in this general form, amounting simply to the uniqueness of inverses mod $\,n\,$ within the standard rep system $\,\{0,1,\ldots,n\!-\!1\},\,$ namely

Theorem $\ $ If $\, \color{#0a0}{a< bc}\, $ and $\, bc\!-\!1\mid ac\!-\!1\ $ then $\ a = b,\ $ for integers $\,a,b,c > 0$

Proof $\ \ {\rm mod}\,\ n\!=\!bc\!-\!1\!:\,\ bc\equiv 1\equiv ac\,\Rightarrow\, a\equiv c^{-1}\!\equiv b.\ $ $\,bc\!-\!1\mid ac\!-\!1\,\Rightarrow\, b\le a \le \color{#0a0}{bc\!-\!2}\,$ (by $\,b\not\equiv 0).\,$ So $\,a\equiv b\pmod{n}\,$ and $\,a,b\in \{0,1,\ldots,\color{#0a0}{n\!-\!1}\}\Rightarrow\, a=b\,$ (else $\,n\,$ divides the smaller natural $\,a\!-\!b> 0,\,$ contradiction). $\ \ $ QED

The OP is the special case $\ c = 4a,\ $ where $\ a < 4ab = bc,\,$ so the Theorem applies.

Note how translating the theorem into the language of congruences has simplified it so much that we immediately recognize it as a special case of a well-known result about uniqueness of inverses. This is yet another example of a ubiquitous principle that I frequently emphasize here, namely uniqueness theorems provide powerful tools for proving equalities.


Clearly, $a \geq b$, since we need $4a^2-1 \geq 4ab-1$. We have $$\dfrac{4a^2-1}{4ab-1} = k \in \mathbb{Z}$$ Hence, $$k = \dfrac{4a^2-1}{4ab-1} = \dfrac{4a^2-4ab+4ab-1}{4ab-1} = 1 + \dfrac{4b(a-b)}{4ab-1}$$ Now note that $\gcd(4ab-1,4b)=1$, since $(4b)a - (4ab-1) = 1$. Hence, $4ab-1$ divides $a-b$. However $0 \leq a-b < 4ab-1$. Hence, $a-b=0 \implies a=b$.


Note that any integer $m \ge 2$ will do, instead of 4.

For example, take Thomas Andrew's solution, and put $m$ for $4$ everywhere:

Note that $mab\equiv 1\pmod {mab-1}$ and if $mab-1\mid ma^2-1$ then $ma^2\equiv 1\pmod{mab-1}$. So $$b\equiv (ma^2)b=a(mab) \equiv a\pmod{mab-1}.$$

Is that possible if $a\neq b$?

Without using modular arithmetic, you can write this as:

$$a-b = b(ma^2-1)-a(mab-1) $$

So $mab-1\mid a-b$.

My note:

To show that $mab-1 > a-b$ for $m \ge 2$, $ab-a+b-1 =(a+1)(b-1) \ge 0 $.

Note that if $m=b=1$, then $mab-1 = a-1$.