Thread Safe C# Singleton Pattern
Solution 1:
Performing the lock is terribly expensive when compared to the simple pointer check instance != null
.
The pattern you see here is called double-checked locking. Its purpose is to avoid the expensive lock operation which is only going to be needed once (when the singleton is first accessed). The implementation is such because it also has to ensure that when the singleton is initialized there will be no bugs resulting from thread race conditions.
Think of it this way: a bare null
check (without a lock
) is guaranteed to give you a correct usable answer only when that answer is "yes, the object is already constructed". But if the answer is "not constructed yet" then you don't have enough information because what you really wanted to know is that it's "not constructed yet and no other thread is intending to construct it shortly". So you use the outer check as a very quick initial test and you initiate the proper, bug-free but "expensive" procedure (lock then check) only if the answer is "no".
The above implementation is good enough for most cases, but at this point it's a good idea to go and read Jon Skeet's article on singletons in C# which also evaluates other alternatives.
Solution 2:
The Lazy<T>
version:
public sealed class Singleton
{
private static readonly Lazy<Singleton> lazy
= new Lazy<Singleton>(() => new Singleton());
public static Singleton Instance
=> lazy.Value;
private Singleton() { }
}
Requires .NET 4 and C# 6.0 (VS2015) or newer.