How can I convert an RGB image into grayscale in Python?

I'm trying to use matplotlib to read in an RGB image and convert it to grayscale.

In matlab I use this:

img = rgb2gray(imread('image.png'));

In the matplotlib tutorial they don't cover it. They just read in the image

import matplotlib.image as mpimg
img = mpimg.imread('image.png')

and then they slice the array, but that's not the same thing as converting RGB to grayscale from what I understand.

lum_img = img[:,:,0]

I find it hard to believe that numpy or matplotlib doesn't have a built-in function to convert from rgb to gray. Isn't this a common operation in image processing?

I wrote a very simple function that works with the image imported using imread in 5 minutes. It's horribly inefficient, but that's why I was hoping for a professional implementation built-in.

Sebastian has improved my function, but I'm still hoping to find the built-in one.

matlab's (NTSC/PAL) implementation:

import numpy as np

def rgb2gray(rgb):

    r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
    gray = 0.2989 * r + 0.5870 * g + 0.1140 * b

    return gray

How about doing it with Pillow:

from PIL import Image
img = Image.open('image.png').convert('L')
img.save('greyscale.png')

If an alpha (transparency) channel is present in the input image and should be preserved, use mode LA:

img = Image.open('image.png').convert('LA')

Using matplotlib and the formula

Y' = 0.2989 R + 0.5870 G + 0.1140 B 

you could do:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140])

img = mpimg.imread('image.png')     
gray = rgb2gray(img)    
plt.imshow(gray, cmap=plt.get_cmap('gray'), vmin=0, vmax=1)
plt.show()

You can also use scikit-image, which provides some functions to convert an image in ndarray, like rgb2gray.

from skimage import color
from skimage import io

img = color.rgb2gray(io.imread('image.png'))

Notes: The weights used in this conversion are calibrated for contemporary CRT phosphors: Y = 0.2125 R + 0.7154 G + 0.0721 B

Alternatively, you can read image in grayscale by:

from skimage import io
img = io.imread('image.png', as_gray=True)

Three of the suggested methods were tested for speed with 1000 RGBA PNG images (224 x 256 pixels) running with Python 3.5 on Ubuntu 16.04 LTS (Xeon E5 2670 with SSD).

Average run times

pil : 1.037 seconds

scipy: 1.040 seconds

sk : 2.120 seconds

PIL and SciPy gave identical numpy arrays (ranging from 0 to 255). SkImage gives arrays from 0 to 1. In addition the colors are converted slightly different, see the example from the CUB-200 dataset.

SkImage: SkImage

PIL : PIL

SciPy : SciPy

Original: Original

Diff : enter image description here

Code

  1. Performance

    run_times = dict(sk=list(), pil=list(), scipy=list())
    for t in range(100):
        start_time = time.time()
        for i in range(1000):
            z = random.choice(filenames_png)
            img = skimage.color.rgb2gray(skimage.io.imread(z))
        run_times['sk'].append(time.time() - start_time)
    
    
    start_time = time.time()
    for i in range(1000):
        z = random.choice(filenames_png)
        img = np.array(Image.open(z).convert('L'))
    run_times['pil'].append(time.time() - start_time)
    
    start_time = time.time()
    for i in range(1000):
        z = random.choice(filenames_png)
        img = scipy.ndimage.imread(z, mode='L')
    run_times['scipy'].append(time.time() - start_time)
    

    for k, v in run_times.items(): print('{:5}: {:0.3f} seconds'.format(k, sum(v) / len(v)))

  2. Output
    z = 'Cardinal_0007_3025810472.jpg'
    img1 = skimage.color.rgb2gray(skimage.io.imread(z)) * 255
    IPython.display.display(PIL.Image.fromarray(img1).convert('RGB'))
    img2 = np.array(Image.open(z).convert('L'))
    IPython.display.display(PIL.Image.fromarray(img2))
    img3 = scipy.ndimage.imread(z, mode='L')
    IPython.display.display(PIL.Image.fromarray(img3))
    
  3. Comparison
    img_diff = np.ndarray(shape=img1.shape, dtype='float32')
    img_diff.fill(128)
    img_diff += (img1 - img3)
    img_diff -= img_diff.min()
    img_diff *= (255/img_diff.max())
    IPython.display.display(PIL.Image.fromarray(img_diff).convert('RGB'))
    
  4. Imports
    import skimage.color
    import skimage.io
    import random
    import time
    from PIL import Image
    import numpy as np
    import scipy.ndimage
    import IPython.display
    
  5. Versions
    skimage.version
    0.13.0
    scipy.version
    0.19.1
    np.version
    1.13.1
    

You can always read the image file as grayscale right from the beginning using imread from OpenCV:

img = cv2.imread('messi5.jpg', 0)

Furthermore, in case you want to read the image as RGB, do some processing and then convert to Gray Scale you could use cvtcolor from OpenCV:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)