$ \frac{\Gamma(r)\Gamma(s)\Gamma(k)}{\Gamma(r+s+k)} $ as a nice integral?
Yes. In general, let $\Sigma = \{(x_1,\ldots, x_n) \in \Bbb R^n \, |\, x_i\ge 0, \sum x_i \le 1\}$. If $\operatorname{Re}(s_i) > 0$ for all $i$, then
$$\int\cdots \int_\Sigma x_1^{s_1 - 1}x_2^{s_2 - 1}\cdots x_n^{s_n - 1}\, dx_1\cdots\, dx_n = \frac{\Gamma(s_1)\cdots \Gamma(s_n)}{\Gamma(1 + s_1 + \cdots + s_n)}.$$
This can be proven by induction.
Using the relation $\Gamma(z + 1) = z \Gamma(z)$, we represent
$$\frac{\Gamma(s_1) \cdots \Gamma(s_n)}{\Gamma(s_1 + \cdots + s_n)} = s\int \cdots \int_{\Sigma} x_1^{s_1 - 1}\cdots x_n^{s_n - 1} dx_1\ldots dx_n$$
where $s = s_1 + \cdots + s_n$.