Linear time algorithm for 2-SUM
This is type of Subset sum problem
Here is my solution. I don't know if it was known earlier or not. Imagine 3D plot of function of two variables i and j:
sum(i,j) = a[i]+a[j]
For every i
there is such j
that a[i]+a[j]
is closest to x
. All these (i,j)
pairs form closest-to-x line. We just need to walk along this line and look for a[i]+a[j] == x
:
int i = 0;
int j = lower_bound(a.begin(), a.end(), x) - a.begin();
while (j >= 0 && j < a.size() && i < a.size()) {
int sum = a[i]+a[j];
if (sum == x) {
cout << "found: " << i << " " << j << endl;
return;
}
if (sum > x) j--;
else i++;
if (i > j) break;
}
cout << " not found\n";
Complexity: O(n)
think in terms of complements.
iterate over the list, figure out for each item what the number needed to get to X for that number is. stick number and complement into hash. while iterating check to see if number or its complement is in hash. if so, found.
edit: and as I have some time, some pseudo'ish code.
boolean find(int[] array, int x) {
HashSet<Integer> s = new HashSet<Integer>();
for(int i = 0; i < array.length; i++) {
if (s.contains(array[i]) || s.contains(x-array[i])) {
return true;
}
s.add(array[i]);
s.add(x-array[i]);
}
return false;
}
- First pass search for the first value that is > ceil(x/2). Lets call this value L.
- From index of L, search backwards till you find the other operand that matches the sum.
It is 2*n ~ O(n)
This we can extend to binary search.
Search for an element using binary search such that we find L, such that L is min(elements in a > ceil(x/2)).
Do the same for R, but now with L as the max size of searchable elements in the array.
This approach is 2*log(n).
Here's a python version using Dictionary data structure and number complement. This has linear running time(Order of N: O(N)):
def twoSum(N, x):
dict = {}
for i in range(len(N)):
complement = x - N[i]
if complement in dict:
return True
dict[N[i]] = i
return False
# Test
print twoSum([2, 7, 11, 15], 9) # True
print twoSum([2, 7, 11, 15], 3) # False