convergence of $\sum \limits_{n=1}^{\infty }\bigl\{ \frac {1\cdot3 \cdots (2n-1)} {2\cdot 4\cdots (2n)}\cdot \frac {4n+3} {2n+2}\bigr\} ^{2}$

We can prove by induction that

$$\dfrac {1\cdot 3\cdots (2n-1)} {2\cdot 4\cdots (2n)} \ge \frac{1}{\sqrt{4n}}$$

and so your series diverges.

You can also notice that

$$\dfrac {1\cdot 3\cdots (2n-1)} {2\cdot 4\cdots (2n)} = \dfrac{\binom{2n}{n}}{4^n}$$

and try using the approximation

$$ \dfrac{\binom{2n}{n}}{4^n} = \frac{1}{\sqrt{\pi n}} \left(1 + \mathcal{O}\left(\frac{1}{n}\right)\right)$$


Denote by $a_n$ the general term, which is positive. We can rewrite it as $\left(\frac{(2n)!}{4^nn!n!}\right)^2\left(\frac{4n+3}{2n+2}\right)^2$, which is equivalent to $b_n:=4\left(\frac{(2n)!}{4^nn!n!}\right)^2$. Now we use Stirling's formula, which states that $n!\overset{+\infty}{\sim}\left(\frac ne\right)^n\sqrt{2\pi n}$. We get \begin{align*} b_n&\overset{+\infty}{\sim} 4\left(\frac{\left(\frac{2n}e\right)^{2n}\sqrt{4n\pi}}{4^n\left(\frac ne\right)^{2n}2\pi n}\right)^2\\ &=\frac 4{n\pi}, \end{align*} and using the fact that the harmonic series diverges, we get that the series $\sum_n a_n$ is divergent.