Assign multiple columns using := in data.table, by group
What is the best way to assign to multiple columns using data.table
? For example:
f <- function(x) {c("hi", "hello")}
x <- data.table(id = 1:10)
I would like to do something like this (of course this syntax is incorrect):
x[ , (col1, col2) := f(), by = "id"]
And to extend that, I may have many columns with names stored in a variable (say col_names
) and I would like to do:
x[ , col_names := another_f(), by = "id", with = FALSE]
What is the correct way to do something like this?
This now works in v1.8.3 on R-Forge. Thanks for highlighting it!
x <- data.table(a = 1:3, b = 1:6)
f <- function(x) {list("hi", "hello")}
x[ , c("col1", "col2") := f(), by = a][]
# a b col1 col2
# 1: 1 1 hi hello
# 2: 2 2 hi hello
# 3: 3 3 hi hello
# 4: 1 4 hi hello
# 5: 2 5 hi hello
# 6: 3 6 hi hello
x[ , c("mean", "sum") := list(mean(b), sum(b)), by = a][]
# a b col1 col2 mean sum
# 1: 1 1 hi hello 2.5 5
# 2: 2 2 hi hello 3.5 7
# 3: 3 3 hi hello 4.5 9
# 4: 1 4 hi hello 2.5 5
# 5: 2 5 hi hello 3.5 7
# 6: 3 6 hi hello 4.5 9
mynames = c("Name1", "Longer%")
x[ , (mynames) := list(mean(b) * 4, sum(b) * 3), by = a]
# a b col1 col2 mean sum Name1 Longer%
# 1: 1 1 hi hello 2.5 5 10 15
# 2: 2 2 hi hello 3.5 7 14 21
# 3: 3 3 hi hello 4.5 9 18 27
# 4: 1 4 hi hello 2.5 5 10 15
# 5: 2 5 hi hello 3.5 7 14 21
# 6: 3 6 hi hello 4.5 9 18 27
x[ , get("mynames") := list(mean(b) * 4, sum(b) * 3), by = a][] # same
# a b col1 col2 mean sum Name1 Longer%
# 1: 1 1 hi hello 2.5 5 10 15
# 2: 2 2 hi hello 3.5 7 14 21
# 3: 3 3 hi hello 4.5 9 18 27
# 4: 1 4 hi hello 2.5 5 10 15
# 5: 2 5 hi hello 3.5 7 14 21
# 6: 3 6 hi hello 4.5 9 18 27
x[ , eval(mynames) := list(mean(b) * 4, sum(b) * 3), by = a][] # same
# a b col1 col2 mean sum Name1 Longer%
# 1: 1 1 hi hello 2.5 5 10 15
# 2: 2 2 hi hello 3.5 7 14 21
# 3: 3 3 hi hello 4.5 9 18 27
# 4: 1 4 hi hello 2.5 5 10 15
# 5: 2 5 hi hello 3.5 7 14 21
# 6: 3 6 hi hello 4.5 9 18 27
Older version using the with
argument (we discourage this argument when possible):
x[ , mynames := list(mean(b) * 4, sum(b) * 3), by = a, with = FALSE][] # same
# a b col1 col2 mean sum Name1 Longer%
# 1: 1 1 hi hello 2.5 5 10 15
# 2: 2 2 hi hello 3.5 7 14 21
# 3: 3 3 hi hello 4.5 9 18 27
# 4: 1 4 hi hello 2.5 5 10 15
# 5: 2 5 hi hello 3.5 7 14 21
# 6: 3 6 hi hello 4.5 9 18 27
The following shorthand notation might be useful. All credit goes to Andrew Brooks, specifically this article.
dt[,`:=`(avg=mean(mpg), med=median(mpg), min=min(mpg)), by=cyl]