Algebraic Identity $a^{n}-b^{n} = (a-b) \sum\limits_{k=0}^{n-1} a^{k}b^{n-1-k}$

I have no idea what you mean by "use trichotomy," but here is the combinatorial argument. $a^n$ counts the number of words of length $n$ on the alphabet $\{ 1, 2, ... a \}$ and $b^n$ counts the number of words of length $n$ on the alphabet $\{ 1, 2, ... b \}$. Assume $a > b$. Then $a^n - b^n$ counts the number of words of length $n$ on the alphabet $\{ 1, 2, ... a \}$ such that at least one letter is greater than $b$.

Given such a word, suppose the last letter greater than $b$ occurs at position $k+1$. Then there are $a - b$ choices for this letter, $a^k$ choices for the letters before this letter, and $b^{n-k-1}$ choices for the letters after this letter. Thus there are $(a - b) a^k b^{n-k-1}$ such words, and summing over all $k$ gives

$$a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-k-1}$$

as desired.


Someone should mention the "polynomial multiplication" or "telescoping" proof, which may be viewed as a variant of the "geometric series" method.

$$\begin{align*} (a-b)\sum_{k=0}^{n-1} a^k b^{n-1-k} &= \sum_{k=0}^{n-1} a^{k+1} b^{n-1-k} - \sum_{k=0}^{n-1} a^k b^{n-k} \\ &= \sum_{k=1}^n a^k b^{n-k} - \sum_{k=0}^{n-1} a^k b^{n-k} = a^n - b^n. \end{align*}$$


You can apply Ruffini's rule. Here is a copy from my Algebra text book (Compêndio de Álgebra, VI, by Sebastião e Silva and Silva Paulo) where the following formula is obtained:

$x^n-a^n\equiv (x-a)(x^{n-1}+ax^{n-2}+a^2x^{n-3}+\cdots +a^{n-2}x+a^{n-1}).$

alt text

Translation: The Ruffini's rule can be used to find the quotient of $x^n-a^n$ by $x-a$:

(Figure)

Thus, if $n$ is a natural number, we have

$x^n-a^n\equiv (x-a)(x^{n-1}+ax^{n-2}+a^2x^{n-3}+\cdots +a^{n-2}x+a^{n-1})$


EDIT

Proof by induction

$n=1$ is valid.

Supose valid by n, then

$$a^{n+1}-b^{n+1}=a(a^{n})+b(b^{n})$$, using the hipotesis :

$$a(a^{n})+b(b^{n})=a\left[b^{n}+(b-a)\displaystyle\sum\limits_{k=0}^{n-1} a^{k}b^{n-1-k}\right] + b\left[a^{n}-(b-a)\displaystyle\sum\limits_{k=0}^{n-1} a^{k}b^{n-1-k}\right]=$$

$$\left[ab^{n}+(b-a)a\displaystyle\sum\limits_{k=0}^{n-1} a^{k}b^{n-1-k}\right] + \left[a^{n}b-(b-a)b\displaystyle\sum\limits_{k=0}^{n-1} a^{k}b^{n-1-k}\right]=$$

$$\left[ab^{n}+(b-a)\displaystyle\sum\limits_{k=0}^{n-1} a^{k+1}b^{n-1-k}\right] + \left[a^{n}b-(b-a)\displaystyle\sum\limits_{k=0}^{n-1} a^{k}b^{n-k}\right]=$$

$$\left[ab^{n}+(b-a)\displaystyle\sum\limits_{k=0}^{n-1} a^{k+1}b^{n-1-k}+(b-a)b^{n}-(b-a)b^{n}\right] +$$ $$ \left[a^{n}b-(b-a)\displaystyle\sum\limits_{k=0}^{n-1} a^{k}b^{n-k}-(b-a)a^{n}+(b-a)a^{n}\right]=$$

$$\left[(b-a)[\displaystyle\sum\limits_{k=0}^{n-1} a^{k+1}b^{n-1-k}+b^{n}]+b^{n+1}\right] +\left[(b-a)[\displaystyle\sum\limits_{k=0}^{n-1} a^{k}b^{n-k}+a^{n}]-a^{n+1}\right] +$$

$$\left[(b-a)\displaystyle\sum\limits_{k=0}^{n} a^{k}b^{n-k}+b^{n+1}\right] +\left[(b-a)\displaystyle\sum\limits_{k=0}^{n} a^{k}b^{n-k}-a^{n+1}\right] =$$

$$-a^{n+1}+b^{n+1}+2\left[(b-a)\displaystyle\sum\limits_{k=0}^{n} a^{k}b^{n-k}\right] =$$

Thus: $$a^{n+1}-b^{n+1}=-a^{n+1}+b^{n+1}+2\left[(b-a)\displaystyle\sum\limits_{k=0}^{n} a^{k}b^{n-k}\right] $$, then

$$2(a^{n+1}-b^{n+1})=2\left[(b-a)\displaystyle\sum\limits_{k=0}^{n} a^{k}b^{n-k}\right]$$

thus:

$$a^{n+1}-b^{n+1}=\left[(b-a)\displaystyle\sum\limits_{k=0}^{n} a^{k}b^{n-k}\right]$$

So $n+1$ is valid.

Complete the proof