Why is the time complexity of both DFS and BFS O( V + E )

The basic algorithm for BFS:

set start vertex to visited

load it into queue

while queue not empty

   for each edge incident to vertex

        if its not visited

            load into queue

            mark vertex

So I would think the time complexity would be:

v1 + (incident edges) + v2 + (incident edges) + .... + vn + (incident edges) 

where v is vertex 1 to n

Firstly, is what I've said correct? Secondly, how is this O(N + E), and intuition as to why would be really nice. Thanks


Solution 1:

Your sum

v1 + (incident edges) + v2 + (incident edges) + .... + vn + (incident edges)

can be rewritten as

(v1 + v2 + ... + vn) + [(incident_edges v1) + (incident_edges v2) + ... + (incident_edges vn)]

and the first group is O(N) while the other is O(E).

Solution 2:

DFS(analysis):

  • Setting/getting a vertex/edge label takes O(1) time
  • Each vertex is labeled twice
    • once as UNEXPLORED
    • once as VISITED
  • Each edge is labeled twice
    • once as UNEXPLORED
    • once as DISCOVERY or BACK
  • Method incidentEdges is called once for each vertex
  • DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
  • Recall that Σv deg(v) = 2m

BFS(analysis):

  • Setting/getting a vertex/edge label takes O(1) time
  • Each vertex is labeled twice
    • once as UNEXPLORED
    • once as VISITED
  • Each edge is labeled twice
    • once as UNEXPLORED
    • once as DISCOVERY or CROSS
  • Each vertex is inserted once into a sequence Li
  • Method incidentEdges is called once for each vertex
  • BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
  • Recall that Σv deg(v) = 2m