How to show $\lceil ( \sqrt3 +1)^{2n}\rceil$ where $n \in \mathbb{ N}$ is divisible by $2^{n+1}$
$$(\sqrt{3}\pm 1)^2=(4 \pm 2\sqrt{3})=2(2 \pm \sqrt{3})$$
Therefore $$( \sqrt3 +1)^{2n} + ( \sqrt3 -1)^{2n} =2^n \left[(2 + \sqrt{3})^n+(2 - \sqrt{3})^n \right] $$
Now, use the Binomial Theorem to prove that $(2 + \sqrt{3})^n+(2 - \sqrt{3})^n $ is an even integer.
Let: $$ A_n = (\sqrt{3}+1)^{2n}+(\sqrt{3}-1)^{2n} = (4+2\sqrt{3})^n+(4-2\sqrt{3})^{n}.\tag{1} $$ Since $0<4-2\sqrt{3}<\frac{2}{3}$, we have that $A_n$ is the integer giving the ceiling of $(\sqrt{3}+1)^{2n}$.
Now we have: $$ A_0 = 2, \quad A_1 = 8,\qquad A_{n+2} = 8 A_{n+1} - 4 A_{n}\tag{2} $$ and if we take: $$ \nu_2(n) = \max\{m\in\mathbb{N}: 2^m\mid n\} \tag{3}$$ it happens that: $$ \nu_2(A_n)\geq n+1\tag{4} $$ can be proved by induction from $(2)$. We can also factor a $2^n$ from the RHS of $(1)$ then just study the parity of the sequence given by: $$ B_n = (2+\sqrt{3})^n+(2-\sqrt{3})^n,\tag{5}$$ for which: $$ B_0=2,\quad B_1=4,\quad B_2=14,\quad B_{n+2}=4B_{n+1}-B_n\equiv -B_n\pmod{4}.\tag{6}$$ That gives:
$$ \nu_2(A_n) = \left\{\begin{array}{rl}n+1 & \text{if }n\text{ is odd,}\\n+2 &\text{if }n\text{ is even.}\end{array}\right.\tag{7}$$