Possibility to simplify $\sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}} = \frac{\pi }{{\sin \pi a}}} $
Is there any way to show that
$$\sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}} = \frac{1}{a} + \sum\limits_{k = 1}^\infty {{{\left( { - 1} \right)}^k}\left( {\frac{1}{{a - k}} + \frac{1}{{a + k}}} \right)}=\frac{\pi }{{\sin \pi a}}} $$
Where $0 < a = \dfrac{n+1}{m} < 1$
The infinite series is equal to
$$\int\limits_{ - \infty }^\infty {\frac{{{e^{at}}}}{{{e^t} + 1}}dt} $$
To get to the result, I split the integral at $x=0$ and use the convergent series in $(0,\infty)$ and $(-\infty,0)$ respectively:
$$\frac{1}{{1 + {e^t}}} = \sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{e^{ - \left( {k + 1} \right)t}}} $$
$$\frac{1}{{1 + {e^t}}} = \sum\limits_{k = 0}^\infty {{{\left( { - 1} \right)}^k}{e^{kt}}} $$
Since $0 < a < 1$
$$\eqalign{ & \mathop {\lim }\limits_{t \to 0} \frac{{{e^{\left( {k + a} \right)t}}}}{{k + a}} - \mathop {\lim }\limits_{t \to - \infty } \frac{{{e^{\left( {k + a} \right)t}}}}{{k + a}} = \frac{1}{{k + a}} \cr & \mathop {\lim }\limits_{t \to \infty } \frac{{{e^{\left( {a - k - 1} \right)t}}}}{{k + a}} - \mathop {\lim }\limits_{t \to 0} \frac{{{e^{\left( {a - k - 1} \right)t}}}}{{k + a}} = - \frac{1}{{a - \left( {k + 1} \right)}} \cr} $$
A change in the indices will give the desired series.
Although I don't mind direct solutions from tables and other sources, I prefer an elaborated answer.
Here's the solution in terms of $\psi(x)$. By separating even and odd indices we can get
$$\eqalign{ & \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \sum\limits_{k = 0}^\infty {\frac{1}{{a + 2k}}} - \sum\limits_{k = 0}^\infty {\frac{1}{{a + 2k + 1}}} \cr & \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a - k}}} = \sum\limits_{k = 0}^\infty {\frac{1}{{a - 2k}}} - \sum\limits_{k = 0}^\infty {\frac{1}{{a - 2k - 1}}} \cr} $$
which gives
$$\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \frac{1}{2}\psi \left( {\frac{{a + 1}}{2}} \right) - \frac{1}{2}\psi \left( {\frac{a}{2}} \right)$$
$$\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a - k}}} = \frac{1}{2}\psi \left( {1 - \frac{a}{2}} \right) - \frac{1}{2}\psi \left( {1 - \frac{{a + 1}}{2}} \right) + \frac{1}{a}$$
Then
$$\eqalign{ & \sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} + \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a - k}}} - \frac{1}{a} = \cr & = \left\{ {\frac{1}{2}\psi \left( {1 - \frac{a}{2}} \right) - \frac{1}{2}\psi \left( {\frac{a}{2}} \right)} \right\} - \left\{ {\frac{1}{2}\psi \left( {1 - \frac{{a + 1}}{2}} \right) - \frac{1}{2}\psi \left( {\frac{{a + 1}}{2}} \right)} \right\} \cr} $$
But using the reflection formula one has
$$\eqalign{ & \frac{1}{2}\psi \left( {1 - \frac{a}{2}} \right) - \frac{1}{2}\psi \left( {\frac{a}{2}} \right) = \frac{\pi }{2}\cot \frac{{\pi a}}{2} \cr & \frac{1}{2}\psi \left( {1 - \frac{{a + 1}}{2}} \right) - \frac{1}{2}\psi \left( {\frac{{a + 1}}{2}} \right) = \frac{\pi }{2}\cot \frac{{\pi \left( {a + 1} \right)}}{2} = - \frac{\pi }{2}\tan \frac{{\pi a}}{2} \cr} $$
So the series become
$$\eqalign{ & \sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \frac{\pi }{2}\left\{ {\cot \frac{{\pi a}}{2} + \tan \frac{{\pi a}}{2}} \right\} \cr & \sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \pi \csc \pi a \cr} $$
The last being an application of a trigonometric identity.
EDIT: The classical demonstration of this is obtained by expanding in Fourier series the function $\cos(zx)$ with $x\in(-\pi,\pi)$.
Let's detail Smirnov's proof (in "Course of Higher Mathematics 2 VI.1 Fourier series") :
$\cos(zx)$ is an even function of $x$ so that the $\sin(kx)$ terms disappear and the Fourier expansion is given by : $$\cos(zx)=\frac{a_0}2+\sum_{k=1}^{\infty} a_k\cdot \cos(kx),\ \text{with}\ \ a_k=\frac2{\pi} \int_0^{\pi} \cos(zx)\cos(kx) dx$$
Integration is easy and $a_0=\frac2{\pi}\int_0^{\pi} \cos(zx) dx= \frac{2\sin(\pi z)}{\pi z}$ while
$a_k= \frac2{\pi}\int_0^{\pi} \cos(zx) \cos(kx) dx=\frac1{\pi}\left[\frac{\sin((z+k)x)}{z+k}+\frac{\sin((z-k)x)}{z-k}\right]_0^{\pi}=(-1)^k\frac{2z\sin(\pi z)}{\pi(z^2-k^2)}$
so that for $-\pi \le x \le \pi$ :
$$ \cos(zx)=\frac{2z\sin(\pi z)}{\pi}\left[\frac1{2z^2}+\frac{\cos(1x)}{1^2-z^2}-\frac{\cos(2x)}{2^2-z^2}+\frac{\cos(3x)}{3^2-z^2}-\cdots\right] $$
Setting $x=0$ returns your equality : $$ \frac1{\sin(\pi z)}=\frac{2z}{\pi}\left[\frac1{2z^2}-\sum_{k=1}^{\infty}\frac{(-1)^k}{k^2-z^2}\right] $$
while $x=\pi$ returns the $\mathrm{cotg}$ formula :
$$ \cot(\pi z)=\frac1{\pi}\left[\frac1{z}-\sum_{k=1}^{\infty}\frac{2z}{k^2-z^2}\right] $$ (Euler used this one to find closed forms of $\zeta(2n)$)
The $\cot\ $ formula is linked to $\Psi$ via the Reflection formula : $$\Psi(1-x)-\Psi(x)=\pi\cot(\pi x)$$
The $\sin$ formula is linked to $\Gamma$ via Euler's reflection formula : $$\Gamma(1-x)\cdot\Gamma(x)=\frac{\pi}{\sin(\pi x)}$$
This is a very elegant and quick way to evaluate this sum with complex analysis. Consider
$$g(z) = \pi \csc (\pi z)f(z)$$
$\csc$ has poles at $2 \pi n$ and $2 \pi n + \pi$ for $n \in \mathbb Z$. Assuming $f(z)$ has no poles at any integer, the residue of $g(z)$ at $2\pi n$ is
$$\operatorname*{Res}_{z = 2 n} g(z) = \lim_{z\to 2 n}(z-2 n)\pi \csc (\pi z)f(z) = \lim_{z\to 2 n}\pi \left(\frac{z-2 n}{\sin (\pi z)}\right)f(z) = f(n)$$
and at $2 \pi n + \pi$:
$$\operatorname*{Res}_{z = 2 n + 1} g(z) = \lim_{z\to 2 n + 1}(z-(2 n + 1))\pi \csc (\pi z)f(z) = \lim_{z\to 2 n + 1}\pi \left(\frac{z-2 n - 1}{\sin (\pi z)}\right)f(z) = -f(n)$$
Let $C_N$ be the square contour with the verticies $\left(N+\frac{1}{2}\right)(1+i)$, $\left(N+\frac{1}{2}\right)(-1+i)$, $\left(N+\frac{1}{2}\right)(-1-i)$ and $\left(N+\frac{1}{2}\right)(1-i)$.
By residue theorem, we have
$$\int_{C_N}g(z)\,dz = \sum_{n=-N}^N (-1)^n f(n) + S$$
where $S$ is the sum of the residues of the poles of $f$. Now, seeing that the left side vanishes as $N \to \infty$ (see here), we have
$$\sum_{k=-\infty}^\infty (-1)^k f(k)=-\sum \text{Residues of }\pi \csc (\pi z)f(z)$$
Clearly the only singularity of $f(z)=\frac{1}{a+z}$ is at $z_0=-a$. Thus
$$\operatorname*{Res}_{z=z_0} \,(\pi \csc (\pi z)f(z))=\lim_{z \to z_0} (z-z_0)\pi \csc (\pi z)f(z)=\lim_{z \to -a} \pi \csc (\pi z)\frac{z+a}{z+a}=-\pi \csc (\pi a)$$
Thus
$$\sum_{k=-\infty}^\infty (-1)^k f(k)=-\operatorname*{Res}_{z=z_0}\,(\pi \csc (\pi z)f(z))=-(-\pi \csc (\pi a))=\frac{\pi}{\sin (\pi a)}$$
QED
A related identity is proven in this answer using residue theory. Here is a real approach to that identity.
Convergence of the Principal Value
We will look at the principal value $$ \begin{align} f(x) &=\lim_{n\to\infty}\sum_{k=-n}^n\frac1{k+x}\tag1\\ &=\frac1x-\sum_{k=1}^\infty\frac{2x}{k^2-x^2}\tag2 \end{align} $$ $(2)$ converges for all non-integer $x$.
Properties of $\boldsymbol{f(x)}$
$\bullet$ $f(x)$ has period $1$:
$$
\begin{align}
f(x)-f(x+1)
&=\lim_{n\to\infty}\left(\sum_{k=-n}^n\frac1{k+x}-\sum_{k=-n}^n\frac1{k+1+x}\right)\tag3\\
&=\lim_{n\to\infty}\left(\sum_{k=-n}^n\frac1{k+x}-\sum_{k=-n+1}^{n+1}\frac1{k+x}\right)\tag4\\
&=\lim_{n\to\infty}\left(\frac1{-n+x}-\frac1{n+1+x}\right)\tag5\\[9pt]
&=0\tag6
\end{align}
$$
Explanation:
$(3)$: definition
$(4)$: substitute $k\mapsto k-1$ in the right sum
$(5)$: the sums telescope
$(6)$: evaluate the limit
$\bullet$ $f(1/2)=0$:
$$
\begin{align}
f(1/2)
&=\lim_{n\to\infty}\sum_{k=-n}^n\frac1{k+1/2}\tag7\\
&=\lim_{n\to\infty}\frac1{n+1/2}\tag8\\[9pt]
&=0\tag9
\end{align}
$$
Explanation:
$(7)$: definition
$(8)$: for $1\le j\le n$, the term with $k=j-1$ cancels the term with $k=-j$
$\phantom{\text{(8):}}$ which leaves the term with $k=n$
$(9)$: evaluate the limit
$\bullet$ $f(x)^2+\pi^2=-f'(x)$:
$$
\begin{align}
f(x)^2
&=\lim_{n\to\infty}\sum_{k=-n}^n\frac1{k+x}\sum_{j=-n}^n\frac1{j+x}\tag{10}\\[3pt]
&=\sum_{k=-\infty}^\infty\frac1{(k+x)^2}+\lim_{n\to\infty}\sum_{\substack{|j|,|k|\le n\\j\ne k}}\left(\frac1{k+x}-\frac1{j+x}\right)\frac1{j-k}\tag{11}\\
&=\sum_{k=-\infty}^\infty\frac1{(k+x)^2}+\lim_{n\to\infty}\sum_{\substack{|j|,|k|\le n\\j\ne k}}\frac2{k+x}\frac1{j-k}\tag{12}\\
&=\sum_{k=-\infty}^\infty\frac1{(k+x)^2}+\lim_{n\to\infty}\sum_{k=1}^n\sum_{\substack{|j|\le n\\j\ne k}}\left(\frac2{k+x}+\frac2{k-x}\right)\frac1{j-k}\tag{13}\\
&=\sum_{k=-\infty}^\infty\frac1{(k+x)^2}-\lim_{n\to\infty}\sum_{k=1}^n\left(\frac2{k+x}+\frac2{k-x}\right)(H_{n+k}-H_{n-k})\tag{14}\\
&=-f'(x)-4\int_0^1\frac{\log\left(\frac{1+x}{1-x}\right)}{x}\,\mathrm{d}x\tag{15}\\[12pt]
&=-f'(x)-\pi^2\tag{16}
\end{align}
$$
Explanation:
$(10)$: product of limits equals the limit of the products
$(11)$: the left sum contains the terms with $j=k$
$\phantom{\text{(11):}}$ apply partial fractions to the right sum
$(12)$: take advantage of the symmetry in $j$ and $k$
$(13)$: for $k=0$, the sum in $j$ is $0$
$\phantom{\text{(14):}}$ for $k\lt0$, if we substitute $(j,k)\mapsto(-j,-k)$,
$\phantom{\text{(14):}}$ we get the sum with $k\gt0$ and $k+x\mapsto k-x$
$(14)$: the sum in $j$ telescopes to $H_{n-k}-H_{n+k}$
$(15)$: the left sum is $f'(x)$
$\phantom{\text{(15):}}$ the right sum is a Riemann Sum
$(16)$: $4\int_0^1\sum\limits_{k=0}^\infty\frac{2\,x^{2k}}{2k+1}\,\mathrm{d}x=4\sum\limits_{k=0}^\infty\frac2{(2k+1)^2}=\pi^2$
Conclude that $\boldsymbol{f(x)=\pi\cot(\pi x)}$
We can separate $(16)$ and integrate: $$ \begin{align} \int\frac{\pi\,\mathrm{d}f}{f^2+\pi^2}&=-\int\pi\,\mathrm{d}x\tag{17}\\ \tan^{-1}(f/\pi)&=C-\pi x\tag{18}\\[9pt] f&=\pi\tan(C-\pi x)\tag{19} \end{align} $$ $(9)$ allows us to compute $C=\pi/2$, giving $$ f(x)=\pi\cot(\pi x)\tag{20} $$ for $x\in(0,1)$. $(6)$ removes this restriction on $x$, validating $(20)$ for all non-integer $x$. That is, $$ \sum_{k=-\infty}^\infty\frac1{k+x}=\pi\cot(\pi x)\tag{21} $$ when taken in the principal value sense.
Answer to the Question
$$
\begin{align}
\sum_{k=-\infty}^\infty\frac{(-1)^k}{k+x}
&=\sum_{k=-\infty}^\infty\frac2{2k+x}-\sum_{k=-\infty}^\infty\frac1{k+x}\tag{22}\\
&=\sum_{k=-\infty}^\infty\frac1{k+x/2}-\sum_{k=-\infty}^\infty\frac1{k+x}\tag{23}\\[6pt]
&=\pi\cot(\pi x/2)-\pi\cot(\pi x)\tag{24}\\[15pt]
&=\pi\csc(\pi x)\tag{25}
\end{align}
$$
Explanation:
$(22)$: the alternating sum is twice the sum of the even terms
$\phantom{\text{(22):}}$ minus the sum of all the terms
$(23)$: adjust the terms of the left sum to apply $(21)$
$(24)$: apply $(21)$
$(25)$: $\frac{1+\cos(\pi x)}{\sin(\pi x)}-\frac{\cos(\pi x)}{\sin(\pi x)}=\frac1{\sin(\pi x)}$