Evaluation of $\sqrt{\frac12+\sqrt{\frac14+\sqrt{\frac18+\cdots+\sqrt{\frac{1}{2^n}}}}}$

Solution 1:

This question is related to at least five others:

  • Problem 6 - IMO 1985
  • How to find this limit: $A=\lim_{n\to \infty}\sqrt{1+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{3}+\cdots+\sqrt{\frac{1}{n}}}}}$
  • Find the limit $L=\lim_{n\to \infty} \sqrt{\frac{1}{2}+\sqrt[3]{\frac{1}{3}+\cdots+\sqrt[n]{\frac{1}{n}}}}$
  • Evaluating the sum $\lim_{n\to \infty}\sqrt[2]{2+\sqrt[3]{2+\sqrt[4]{2+\cdots+\sqrt[n]{2}}}}$
  • Limit of $\lim_{x\rightarrow 1}\sqrt{x-\sqrt[3]{x-\sqrt[4]{x-\sqrt[5]{x-…}}}}$
This makes a short answer possible (and desirable).
For a numerical calculation backward recursion is proposed (again): $$ a_{n-1} = \sqrt{1/2^n+a_n} \qquad \mbox{with} \quad \lim_{n\to\infty} a_n = 0 $$ Here comes the Pascal program snippet that is supposed to do the job:

program apart;
procedure again(n : integer); var a,two : double; k : integer; begin two := 1; for k := n downto 2 do two := two/2; a := 0; for k := n downto 2 do begin a := sqrt(two+a); two := two*2; end; Writeln(a); end;
begin again(52); end.
Note that an error analysis is not implemented in the program. This has not much sense because the accuracy is determined by the smallest $1/2^n$ that can be represented with some significance; that is for $n\approx 52$ in double precision Pascal. The outcome is, of course, in concordance with the value already found by Lucian:
 1.28573676335699E+0000
Disclaimer. I certainly would have tried the closed form - whatever that means in modern times - if I only could believe that such a thing does indeed exist here.

Solution 2:

It is easy to show, assuming the limit exists:

$$\sqrt{a+\sqrt{a+\sqrt{a+...}}}=\frac{1+\sqrt{1+4a}}{2}$$

It is also easy to see the following set of inequalities:

$$\sqrt{\frac{1}{2}+1} < \sqrt{\frac12+\sqrt{\frac14+\sqrt{\frac18+\cdots}}}<\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+...}}}$$

$$\sqrt{\frac{1}{2}+\sqrt{\frac{1}{4}+1}} < \sqrt{\frac12+\sqrt{\frac14+\sqrt{\frac18+\cdots}}}<\sqrt{\frac{1}{2}+\sqrt{\frac{1}{4}+\sqrt{\frac{1}{4}+...}}}$$

$$\sqrt{\frac{1}{2}+\sqrt{\frac{1}{4}+\sqrt{\frac{1}{8}+1}}} < \sqrt{\frac12+\sqrt{\frac14+\sqrt{\frac18+\cdots}}}<\sqrt{\frac{1}{2}+\sqrt{\frac{1}{4}+\sqrt{\frac{1}{8}+\sqrt{\frac{1}{8}+...}}}}$$

And so on, getting better and better approximations.

Calculating the nested radicals:

$$\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+...}}}=\frac{1+\sqrt{3}}{2}$$

$$\sqrt{\frac{1}{4}+\sqrt{\frac{1}{4}+\sqrt{\frac{1}{4}+...}}}=\frac{1+\sqrt{2}}{2}$$

$$\sqrt{\frac{1}{8}+\sqrt{\frac{1}{8}+\sqrt{\frac{1}{8}+...}}}=\frac{1+\sqrt{1.5}}{2}$$

We get following set of boundaries for the value we need:

$$R=\sqrt{\frac12+\sqrt{\frac14+\sqrt{\frac18+\cdots}}}=1.285737\dots$$

$$1.22474<R<1.36603$$

$$1.27202<R<1.30656$$

$$1.28251<R<1.29120$$

And so on. There is no closed form, but it's not hard to evaluate this nested radical with good precision.