$L=\lim_{x\to\infty}(f(x)+f'(x))$ exists . Which of the following statements is\are correct?
Let $f$ be a continously differentiable function on $\mathbb R$. Suppose that
$$L=\lim_{x\to\infty}(f(x)+f'(x))$$ exists. If $0<L<\infty$, then which of the following statements is\are correct?
If $\lim_{x\to\infty} f'(x)$ exists, then it is $0$.
If $\lim_{x\to\infty} f(x)$ exists, then it is $L$.
If $\lim_{x\to\infty} f'(x)$ exists, then $\lim_{x\to\infty}f(x)=0$.
If $\lim_{x\to\infty} f(x)$ exists, then $\lim_{x\to\infty}f'(x)=0$.
My Guess
I could not conclude the answer and prove that properly. But, I guess that it must be 1 and 2. help me.
Hint: Check this: $$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty}\frac{e^xf(x)}{e^x} \color{red}{=} \lim_{x \to +\infty}\frac{e^x(f(x)+f'(x))}{e^x} = \lim_{x \to +\infty}f(x)+f'(x) = L,$$ by $\color{red}{\text{L'Hospital's rule}}$.
Hint:
If $\lim f'(x) = M$, then $\lim f(x) = L-M$
Use the MVT: $f(x+1) - f(x) = f'(\xi)$ with $x < \xi < x+1$.
- If $\lim\limits_{x\to\infty}f'(x)$ exists, then $\lim\limits_{x\to\infty}f(x)=L-\lim\limits_{x\to\infty}f'(x)$ also exists. Then $$ \begin{align} \lim\limits_{x\to\infty}f'(x) &=\lim\limits_{x\to\infty}(f(x+1)-f(x))\\ &=\lim\limits_{x\to\infty}f(x+1)-\lim\limits_{x\to\infty}f(x)\\ &=0\tag{1} \end{align} $$
- If $\lim\limits_{x\to\infty}f(x)$ exists, then $(1)$ implies that $\lim\limits_{x\to\infty}f'(x)=0$ and therefore, $$ \begin{align} \lim\limits_{x\to\infty}f(x) &=L-\lim\limits_{x\to\infty}f'(x)\\ &=L\tag{2} \end{align} $$
If $\lim\limits_{x\to\infty}f'(x)$ exists, then $(1)$ and $(2)$ say that $\lim\limits_{x\to\infty}f'(x)=0$ and $\lim\limits_{x\to\infty}f(x)=L$.
If $\lim\limits_{x\to\infty}f(x)$ exists, then $(1)$ implies that $\lim\limits_{x\to\infty}f'(x)=0$.
You are correct about 1 and 2.
Note also that 2 implies 4, since $$ \lim_{x \to \infty} f'(x) = L - \lim_{x \to \infty} f(x) $$ (assuming the latter limit exists).
Note that for arbitrary functions $g,h$: if $\lim_{x \to \infty} g(x)$ and $\lim_{x \to \infty} h(x)$ both exist, then $$ \lim_{x \to \infty} [g(x) \pm h(x)] = \lim_{x \to \infty} g(x) \pm \lim_{x \to \infty} h(x) $$