Prove that $\sum_{n=0}^\infty \frac{(-1)^n}{3n+1} = \frac{\pi}{3\sqrt{3}}+\frac{\log 2}{3}$
Prove that $$\sum_{n=0}^\infty \frac{(-1)^n}{3n+1} = \frac{\pi}{3\sqrt{3}}+\frac{\log 2}{3}$$
I tried to look at $$ f_n(x) = \sum_{n=0}^\infty \frac{(-1)^n}{3n+1} x^n $$
And maybe taking it's derivative but it didn't work out well.
Any ideas?
Solution 1:
Hint
$$\sum_{n=0}^\infty\frac{(-1)^n}{3n+1}=\lim_{N\to\infty}\sum_{n=0}^N(-1)^n\int_0^1t^{3n}dt=\lim_{N\to\infty}\int_0^1\sum_{n=0}^N(-t^3)^ndt=\lim_{N\to\infty}\int_0^1\frac{1-(-t^3)^{N+1}}{1+t^3}dt$$
Now you need to prove two things:
- $$\int_0^1\frac{dt}{1+t^3}=\frac{\pi}{3\sqrt{3}}+\frac{\log 2}{3}$$
- $$\lim_{N\to\infty}\int_0^1\frac{(-t^3)^{N+1}}{1+t^3}dt=0$$
Solution 2:
For a geometric series.
$$\sum_{n=0}^{\infty} (-1)^n(x^n) = \frac{1}{1+x}$$
Substitute $x \rightarrow x^3$
$$\sum_{n=0}^{\infty} (-1)^n (x^{3n}) = \frac{1}{1+x^3}$$
Integrate the sides.
$$\sum_{n=0}^{\infty} (-1)^n\frac{x^{3n + 1}}{3n + 1} = \int \frac{dx}{1+x^3}$$
The hard part is the integration. Then let $x=1$