apply a function over groups of columns
How can I use apply
or a related function to create a new data frame that contains the results of the row averages of each pair of columns in a very large data frame?
I have an instrument that outputs n
replicate measurements on a large number of samples, where each single measurement is a vector (all measurements are the same length vectors). I'd like to calculate the average (and other stats) on all replicate measurements of each sample. This means I need to group n
consecutive columns together and do row-wise calculations.
For a simple example, with three replicate measurements on two samples, how can I end up with a data frame that has two columns (one per sample), one that is the average each row of the replicates in dat$a
, dat$b
and dat$c
and one that is the average of each row for dat$d
, dat$e
and dat$f
.
Here's some example data
dat <- data.frame( a = rnorm(16), b = rnorm(16), c = rnorm(16), d = rnorm(16), e = rnorm(16), f = rnorm(16))
a b c d e f
1 -0.9089594 -0.8144765 0.872691548 0.4051094 -0.09705234 -1.5100709
2 0.7993102 0.3243804 0.394560355 0.6646588 0.91033497 2.2504104
3 0.2963102 -0.2911078 -0.243723116 1.0661698 -0.89747522 -0.8455833
4 -0.4311512 -0.5997466 -0.545381175 0.3495578 0.38359390 0.4999425
5 -0.4955802 1.8949285 -0.266580411 1.2773987 -0.79373386 -1.8664651
6 1.0957793 -0.3326867 -1.116623982 -0.8584253 0.83704172 1.8368212
7 -0.2529444 0.5792413 -0.001950741 0.2661068 1.17515099 0.4875377
8 1.2560402 0.1354533 1.440160168 -2.1295397 2.05025701 1.0377283
9 0.8123061 0.4453768 1.598246016 0.7146553 -1.09476532 0.0600665
10 0.1084029 -0.4934862 -0.584671816 -0.8096653 1.54466019 -1.8117459
11 -0.8152812 0.9494620 0.100909570 1.5944528 1.56724269 0.6839954
12 0.3130357 2.6245864 1.750448404 -0.7494403 1.06055267 1.0358267
13 1.1976817 -1.2110708 0.719397607 -0.2690107 0.83364274 -0.6895936
14 -2.1860098 -0.8488031 -0.302743475 -0.7348443 0.34302096 -0.8024803
15 0.2361756 0.6773727 1.279737692 0.8742478 -0.03064782 -0.4874172
16 -1.5634527 -0.8276335 0.753090683 2.0394865 0.79006103 0.5704210
I'm after something like this
X1 X2
1 -0.28358147 -0.40067128
2 0.50608365 1.27513471
3 -0.07950691 -0.22562957
4 -0.52542633 0.41103139
5 0.37758930 -0.46093340
6 -0.11784382 0.60514586
7 0.10811540 0.64293184
8 0.94388455 0.31948189
9 0.95197629 -0.10668118
10 -0.32325169 -0.35891702
11 0.07836345 1.28189698
12 1.56269017 0.44897971
13 0.23533617 -0.04165384
14 -1.11251880 -0.39810121
15 0.73109533 0.11872758
16 -0.54599850 1.13332286
which I did with this, but is obviously no good for my much larger data frame...
data.frame(cbind(
apply(cbind(dat$a, dat$b, dat$c), 1, mean),
apply(cbind(dat$d, dat$e, dat$f), 1, mean)
))
I've tried apply
and loops and can't quite get it together. My actual data has some hundreds of columns.
Solution 1:
This may be more generalizable to your situation in that you pass a list of indices. If speed is an issue (large data frame) I'd opt for lapply
with do.call
rather than sapply
:
x <- list(1:3, 4:6)
do.call(cbind, lapply(x, function(i) rowMeans(dat[, i])))
Works if you just have col names too:
x <- list(c('a','b','c'), c('d', 'e', 'f'))
do.call(cbind, lapply(x, function(i) rowMeans(dat[, i])))
EDIT
Just happened to think maybe you want to automate this to do every three columns. I know there's a better way but here it is on a 100 column data set:
dat <- data.frame(matrix(rnorm(16*100), ncol=100))
n <- 1:ncol(dat)
ind <- matrix(c(n, rep(NA, 3 - ncol(dat)%%3)), byrow=TRUE, ncol=3)
ind <- data.frame(t(na.omit(ind)))
do.call(cbind, lapply(ind, function(i) rowMeans(dat[, i])))
EDIT 2 Still not happy with the indexing. I think there's a better/faster way to pass the indexes. here's a second though not satisfying method:
n <- 1:ncol(dat)
ind <- data.frame(matrix(c(n, rep(NA, 3 - ncol(dat)%%3)), byrow=F, nrow=3))
nonna <- sapply(ind, function(x) all(!is.na(x)))
ind <- ind[, nonna]
do.call(cbind, lapply(ind, function(i)rowMeans(dat[, i])))
Solution 2:
A similar question was asked here by @david: averaging every 16 columns in r (now closed), which I answered by adapting @TylerRinker's answer above, following a suggestion by @joran and @Ben. Because the resulting function might be of help to OP or future readers, I am copying that function here, along with an example for OP's data.
# Function to apply 'fun' to object 'x' over every 'by' columns
# Alternatively, 'by' may be a vector of groups
byapply <- function(x, by, fun, ...)
{
# Create index list
if (length(by) == 1)
{
nc <- ncol(x)
split.index <- rep(1:ceiling(nc / by), each = by, length.out = nc)
} else # 'by' is a vector of groups
{
nc <- length(by)
split.index <- by
}
index.list <- split(seq(from = 1, to = nc), split.index)
# Pass index list to fun using sapply() and return object
sapply(index.list, function(i)
{
do.call(fun, list(x[, i], ...))
})
}
Then, to find the mean of the replicates:
byapply(dat, 3, rowMeans)
Or, perhaps the standard deviation of the replicates:
byapply(dat, 3, apply, 1, sd)
Update
by
can also be specified as a vector of groups:
byapply(dat, c(1,1,1,2,2,2), rowMeans)
Solution 3:
mean for rows from vectors a,b,c
rowMeans(dat[1:3])
means for rows from vectors d,e,f
rowMeans(dat[4:6])
all in one call you get
results<-cbind(rowMeans(dat[1:3]),rowMeans(dat[4:6]))
if you only know the names of the columns and not the order then you can use:
rowMeans(cbind(dat["a"],dat["b"],dat["c"]))
rowMeans(cbind(dat["d"],dat["e"],dat["f"]))
#I dont know how much damage this does to speed but should still be quick