Closed-form of $\sum_{n=0}^\infty\;(-1)^n \frac{\left(2-\sqrt{3}\right)^{2n+1}}{(2n+1)^2\quad}$
Solution 1:
First Approach
Using PolyLog[2,x]
, aka $\mathrm{Li}_2(x)$, we can compute the sum
$$
\begin{align}
\sum_{n=0}^\infty\frac{x^{2n+1}}{(2n+1)^2}
&=\mathrm{Li}_2(x)-\tfrac14\mathrm{Li}_2(x^2)
\end{align}
$$
Therefore, we have
$$
\begin{align}
\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)^2}
&=-i\sum_{n=0}^\infty\frac{(ix)^{2n+1}}{(2n+1)^2}\\
&=-i\left[\mathrm{Li}_2(ix)-\tfrac14\mathrm{Li}_2(-x^2)\right]
\end{align}
$$
Plugging in $x=2-\sqrt3$ gives
$$
\begin{align}
\sum_{n=0}^\infty(-1)^n\frac{(2-\sqrt3)^{2n+1}}{(2n+1)^2}
&=-i\left[\mathrm{Li}_2(i(2-\sqrt3))-\tfrac14\mathrm{Li}_2(4\sqrt3-7)\right]\\
&\doteq0.26586495827930698269
\end{align}
$$
The last value is computed using Mathematica 8 from the $\mathrm{Li}_2$ formula:
-I(PolyLog[2,I(2 - Sqrt[3])]-1/4PolyLog[2,4Sqrt[3]-7])
Second Approach
Using the Lerch Transcendent, $$ \Phi(z,s,a)=\sum_{k=0}^\infty\frac{z^k}{(a+k)^s} $$ we get $$ \begin{align} \sum_{n=0}^\infty(-1)^n\frac{(2-\sqrt3)^{2n+1}}{(2n+1)^2} &=\frac{2-\sqrt3}4\Phi\left(4\sqrt3-7,2,\tfrac12\right)\\ &\doteq0.26586495827930698269 \end{align} $$ The last value is computed using Mathematica 8 from the $\Phi$ formula:
(2-Sqrt[3])/4LerchPhi[4Sqrt[3]-7,2,1/2]
Third Approach
In my opinion, this gives the best closed form.
As in this answer, we can look at a related generating function.
$$
\sum_{k=0}^\infty(-1)^k\frac{t^{2k+1}}{2k+1}=\arctan(t)\tag{1}
$$
Dividing $(1)$ by $t$ and integrating gives
$$
\begin{align}
\hspace{-1.5cm}
\sum_{k=0}^\infty(-1)^k\frac{(2-\sqrt3)^{2k+1}}{(2k+1)^2}
&=\int_0^{2-\sqrt3}\frac{\arctan(t)}{t}\mathrm{d}t\tag{2a}\\
&=\int_0^{\pi/12}x\,\mathrm{d}\log(\tan(x))\tag{2b}\\
&=\frac\pi{12}\log(2-\sqrt3)-\int_0^{\pi/12}\log(\tan(x))\,\mathrm{d}x\tag{2c}\\
&=\frac\pi{12}\log(2-\sqrt3)+2\int_0^{\pi/12}\sum_{k=0}^\infty\frac{\cos((4k+2)x)}{2k+1}\,\mathrm{d}x\tag{2d}\\
&=\frac\pi{12}\log(2-\sqrt3)+\sum_{k=0}^\infty\frac{\sin((2k+1)\pi/6)}{(2k+1)^2}\tag{2e}\\
&=\frac\pi{12}\log(2-\sqrt3)+\frac12\sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2}+\frac32\sum_{k=0}^\infty\frac{(-1)^k}{(6k+3)^2}\tag{2f}\\
&=\frac\pi{12}\log(2-\sqrt3)+\frac23\sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2}\tag{2g}\\
&=\frac\pi{12}\log(2-\sqrt3)+\frac23\mathrm{G}\tag{2h}\\[12pt]
&\doteq0.26586495827930698269
\end{align}
$$
Explanation:
$\text{(2a)}$: divide $(1)$ by $t$ and integrate
$\text{(2b)}$: substitute $t=\tan(x)$
$\text{(2c)}$: integrate by parts
$\text{(2d)}$: $\log(\tan(x))=-2\sum\limits_{k=0}^\infty\frac{\cos((4k+2)x)}{2k+1}$
$\text{(2e)}$: integrate
$\text{(2f)}$: details below
$\text{(2g)}$: $\frac12+\frac32\cdot\frac19=\frac23$
$\text{(2h)}$: $\mathrm{G}=\sum\limits_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2}$ is Catalan's Constant
The last value is computed using Mathematica 8 from $\text{(2h)}$:
Pi/12Log[2-Sqrt[3]]+2/3Catalan
Details of $\mathbf{(2f)}$
$\begin{align} \sin((2k+1)\pi/6)&=\left(\frac12,\quad1\ \ ,\frac12,-\frac12,\,-1\,,-\frac12,\frac12,\quad1\ \ ,\frac12,\dots\right)\\ &=\left(\frac12,-\frac12,\frac12,-\frac12,\ \ \frac12,-\frac12,\frac12,-\frac12,\frac12,\dots\right)\\ &+\left(\ 0\ ,\quad\frac32,\ 0\ ,\quad\,0\ ,-\frac32,\quad\,0\ ,\ 0\ ,\quad\frac32,\ 0\ ,\dots\right)\\ 2k+1 &=(\ \ \,1\,,\quad\ 3\,,\ \,5\,,\quad\ 7\,,\quad\ 9\,,\quad11,13,\ \ \ 15\,,17\,,\dots) \end{align}$
Note that the $\pm\frac32$ corrections are at positions where $2k+1$ is $3$ times an odd number. That is, $$ \sum_{k=0}^\infty\frac{\sin((2k+1)\pi/6)}{(2k+1)^2} =\frac12\sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2} +\frac32\sum_{k=0}^\infty\frac{(-1)^k}{(6k+3)^2} $$ which justifies $\text{(2f)}$.
Solution 2:
The second serie has not elementary sum: see http://mathworld.wolfram.com/LerchTranscendent.html