Evaluate $\int_0^1x\log\left(1+x^2\right)\left[\log\left(\frac{1-x}{1+x}\right)\right]^3\operatorname{d}\!x$
Solution 1:
I don't have a complete answer.
Let $\displaystyle I=\int_0^1 x\log(1+x^2)\Big[\log\Big(\dfrac{1-x}{1-x}\Big)\Big]^3dx$
First perform the change of variable $y=\dfrac{1-x}{1+x}$.
$\displaystyle I=\int_0^1 \dfrac{2(1-x)}{(1+x)^3}\log\Big(\dfrac{2(1+x^2)}{(1+x)^2}\Big)\log^3xdx$
Notice: $\dfrac{1-x}{(1+x)^3}=\dfrac{2}{(1+x)^2}-\dfrac{1}{(1+x)^3}$
Therefore:
$I=4\log 2\times B-2\log 2\times A+4D-2C-8F+4E$
Where:
$A=\displaystyle \int_0^1\dfrac{\log^3x}{(1+x)^2}dx$
$B=\displaystyle \int_0^1\dfrac{\log^3x}{(1+x)^3}dx$
$C=\displaystyle \int_0^1 \dfrac{\log(1+x^2)\log^3x}{(1+x)^2}dx$
$D=\displaystyle \int_0^1 \dfrac{\log(1+x^2)\log^3x}{(1+x)^3}dx$
$E=\displaystyle \int_0^1 \dfrac{\log(1+x)\log^3x}{(1+x)^2}dx$
$F=\displaystyle \int_0^1 \dfrac{\log(1+x)\log^3x}{(1+x)^3}dx$
One can continue like this, using integration by parts:
$C=\displaystyle\int_0^1 \dfrac{3\log^2x\log(1+x^2)}{x}dx-\int_0^1 \dfrac{3\log^2x\log(1+x^2)}{1+x}dx+\int_0^1 \dfrac{x\log^3 x}{1+x}dx-\int_0^1 \dfrac{x^2\log^3 x}{1+x^2}dx+\int_0^1 \dfrac{x\log^3 x}{1+x^2}dx$
Let's compute $A$:
$\displaystyle A=\int_0^1 \Big[\sum_{n=0}^{+\infty}(n+1)(-1)^nx^n\Big]\log^3 x dx$
$\displaystyle A=-6\sum_{n=0}^{+\infty} \dfrac{(-1)^n}{(n+1)^3}$
$A=-6\times (1-2^{1-3})\zeta(3)=-\dfrac{9}{2}\zeta(3)$
Let's compute $B$:
$\displaystyle B=\dfrac{1}{2}\int_0^1 \Big[(-1)^n(n+2)(n+1)x^n\Big]\log^3 x dx$
$\displaystyle B=-3\sum_{n=0}^{+\infty} \dfrac {(-1)^n}{(n+1)^2}-3\sum_{n=0}^{+\infty} \dfrac {(-1)^n}{(n+1)^3}$
$B=-3\times(1-2^{1-2})\zeta(2)-3\times(1-2^{1-3})\zeta(3)=-\dfrac{3}{2}\zeta(2)-\dfrac{9}{4}\zeta(3)$
$B=-\dfrac{\pi^2}{4}-\dfrac{9}{4}\zeta(3)$
Let's continue.
(it's a bad idea to try to compute $E$ by the way. happily, we're lucky, we don't have to do this)
$\displaystyle E=3\int_0^1 \dfrac{\log^2(x)\log(1+x)}{x}dx-3\int_0^1 \dfrac{\log^2(x)\log(1+x)}{1+x}dx+A$
Let $E_1:=\displaystyle \int_0^1 \dfrac{\log^2(x)\log(1+x)}{x}dx$
Let $\displaystyle E_2:=\int_0^1 \dfrac{\log^2(x)\log(1+x)}{1+x}dx$
(believe me, you don't want to compute $E_2$)
Using integration by parts and partial fraction decomposition: $\displaystyle -8F=12E_2-12E_1+24\int_0^1 \dfrac{\log x\log(1+x)}{x}dx-24\int_0^1 \dfrac{\log x\log(1+x)}{1+x}dx+12\times\int_0^1\dfrac{\log^2x}{(1+x)^2}dx-4B$
Let $\displaystyle F_1=\int_0^1 \dfrac{\log x\log(1+x)}{x}dx$
$\displaystyle F_1=\int_0^1 \Big[\sum_{n=0}^{+\infty}(-1)^n\dfrac{x^{n+1}}{n+1}\Big]\dfrac{\log x}{x}dx$
$F_1=\displaystyle -\sum_{n=0}^{+\infty}\dfrac{(-1)^n}{(n+1)^3}=-(1-2^{1-3})\zeta(3)=-\dfrac{3}{4}\zeta(3)$
Let $\displaystyle F_2=\int_0^1 \dfrac{\log x\log(1+x)}{1+x}dx=-\dfrac{1}{8}\zeta(3)$
(based upon the computation of $K$ in: Other challenging logarithmic integral $\int_0^1 \frac{\log^2(x)\log(1-x)\log(1+x)}{x}dx$ )
Another way to compute $F_2$ knowing that:
$Li_2\Big(\dfrac{1}{2}\Big)=\dfrac{1}{12}\Big(\pi^2-6(\log 2)^2\Big)$
$Li_3\Big(\dfrac{1}{2}\Big)=\dfrac{1}{24}\Big(4(\log 2)^3-2\pi^2\log 2+21\zeta(3)\Big)$
Performing the change of variable $y=\log(1+x)$:
$\displaystyle F_2=\int_0^{\log 2} x\log(e^x-1)dx=\int_0^{\log 2} x^2dx+\int_0^{\log 2} x\log(1-e^{-x})dx$
$\displaystyle F_2=\dfrac{(\log 2)^3}{3}-\sum_{n=1}^{+\infty}\Big(\int_0^{\log 2}\dfrac{xe^{-nx}}{n}dx\Big)$
$\displaystyle F_2=\dfrac{(\log 2)^3}{3}-\sum_{n=1}^{+\infty}\dfrac{1}{n^3}+\log 2\sum_{n=1}^{+\infty}\dfrac{2^{-n}}{n^2}+\sum_{n=1}^{+\infty}\dfrac{2^{-n}}{n^3}$
$\displaystyle F_2=\dfrac{(\log 2)^3}{3}-\zeta(3)+\log 2 Li_2\Big(\dfrac{1}{2}\Big)+Li_3\Big(\dfrac{1}{2}\Big)=-\dfrac{1}{8}\zeta(3)$
Let $\displaystyle F_3=\int_0^1\dfrac{\log^2x}{(1+x)^2}dx$
$\displaystyle F_3=\int_0^1 \Big[\sum_{n=0}^{+\infty}(n+1)(-1)^nx^n\Big]\log^2 x dx$
$\displaystyle F_3=2\sum_{n=0}^{+\infty} \dfrac{(-1)^n}{(n+1)^2}$
$F_3=2\times (1-2^{1-2})\zeta(2)=\zeta(2)=\dfrac{\pi^2}{6}$
Therefore:
$-8F+4E=24F_1-24F_2+12F_3-4B+4A=-24\zeta(3)+3\pi^2$
The harder part remains to do !