Redefining the Index in a Pandas DataFrame object
I am trying to re-index a pandas DataFrame
object, like so,
From:
a b c
0 1 2 3
1 10 11 12
2 20 21 22
To :
b c
1 2 3
10 11 12
20 21 22
I am going about this as shown below and am getting the wrong answer. Any clues on how to do this?
>>> col = ['a','b','c']
>>> data = DataFrame([[1,2,3],[10,11,12],[20,21,22]],columns=col)
>>> data
a b c
0 1 2 3
1 10 11 12
2 20 21 22
>>> idx2 = data.a.values
>>> idx2
array([ 1, 10, 20], dtype=int64)
>>> data2 = DataFrame(data,index=idx2,columns=col[1:])
>>> data2
b c
1 11 12
10 NaN NaN
20 NaN NaN
Any idea why this is happening?
Why don't you simply use set_index
method?
In : col = ['a','b','c']
In : data = DataFrame([[1,2,3],[10,11,12],[20,21,22]],columns=col)
In : data
Out:
a b c
0 1 2 3
1 10 11 12
2 20 21 22
In : data2 = data.set_index('a')
In : data2
Out:
b c
a
1 2 3
10 11 12
20 21 22
If you don't want 'a' in the index
In :
col = ['a','b','c']
data = DataFrame([[1,2,3],[10,11,12],[20,21,22]],columns=col)
data
Out:
a b c
0 1 2 3
1 10 11 12
2 20 21 22
In :
data2 = data.set_index('a')
Out:
b c
a
1 2 3
10 11 12
20 21 22
In :
data2.index.name = None
Out:
b c
1 2 3
10 11 12
20 21 22