Most elegant way to generate prime numbers [closed]

What is the most elegant way to implement this function:

ArrayList generatePrimes(int n)

This function generates the first n primes (edit: where n>1), so generatePrimes(5) will return an ArrayList with {2, 3, 5, 7, 11}. (I'm doing this in C#, but I'm happy with a Java implementation - or any other similar language for that matter (so not Haskell)).

I do know how to write this function, but when I did it last night it didn't end up as nice as I was hoping. Here is what I came up with:

ArrayList generatePrimes(int toGenerate)
{
    ArrayList primes = new ArrayList();
    primes.Add(2);
    primes.Add(3);
    while (primes.Count < toGenerate)
    {
        int nextPrime = (int)(primes[primes.Count - 1]) + 2;
        while (true)
        {
            bool isPrime = true;
            foreach (int n in primes)
            {
                if (nextPrime % n == 0)
                {
                    isPrime = false;
                    break;
                }
            }
            if (isPrime)
            {
                break;
            }
            else
            {
                nextPrime += 2;
            }
        }
        primes.Add(nextPrime);
    }
    return primes;
}

I'm not too concerned about speed, although I don't want it to be obviously inefficient. I don't mind which method is used (naive or sieve or anything else), but I do want it to be fairly short and obvious how it works.

Edit: Thanks to all who have responded, although many didn't answer my actual question. To reiterate, I wanted a nice clean piece of code that generated a list of prime numbers. I already know how to do it a bunch of different ways, but I'm prone to writing code that isn't as clear as it could be. In this thread a few good options have been proposed:

  • A nicer version of what I originally had (Peter Smit, jmservera and Rekreativc)
  • A very clean implementation of the sieve of Eratosthenes (starblue)
  • Use Java's BigIntegers and nextProbablePrime for very simple code, although I can't imagine it being particularly efficient (dfa)
  • Use LINQ to lazily generate the list of primes (Maghis)
  • Put lots of primes in a text file and read them in when necessary (darin)

Edit 2: I've implemented in C# a couple of the methods given here, and another method not mentioned here. They all find the first n primes effectively (and I have a decent method of finding the limit to provide to the sieves).


Solution 1:

Use the estimate

pi(n) = n / log(n)

for the number of primes up to n to find a limit, and then use a sieve. The estimate underestimates the number of primes up to n somewhat, so the sieve will be slightly larger than necessary, which is ok.

This is my standard Java sieve, computes the first million primes in about a second on a normal laptop:

public static BitSet computePrimes(int limit)
{
    final BitSet primes = new BitSet();
    primes.set(0, false);
    primes.set(1, false);
    primes.set(2, limit, true);
    for (int i = 0; i * i < limit; i++)
    {
        if (primes.get(i))
        {
            for (int j = i * i; j < limit; j += i)
            {
                primes.clear(j);
            }
        }
    }
    return primes;
}

Solution 2:

Many thanks to all who gave helpful answers. Here are my implementations of a few different methods of finding the first n primes in C#. The first two methods are pretty much what was posted here. (The posters names are next to the title.) I plan on doing the sieve of Atkin sometime, although I suspect it won't be quite as simple as the methods here currently. If anybody can see any way of improving any of these methods I'd love to know :-)

Standard Method (Peter Smit, jmservera, Rekreativc)

The first prime number is 2. Add this to a list of primes. The next prime is the next number that is not evenly divisible by any number on this list.

public static List<int> GeneratePrimesNaive(int n)
{
    List<int> primes = new List<int>();
    primes.Add(2);
    int nextPrime = 3;
    while (primes.Count < n)
    {
        int sqrt = (int)Math.Sqrt(nextPrime);
        bool isPrime = true;
        for (int i = 0; (int)primes[i] <= sqrt; i++)
        {
            if (nextPrime % primes[i] == 0)
            {
                isPrime = false;
                break;
            }
        }
        if (isPrime)
        {
            primes.Add(nextPrime);
        }
        nextPrime += 2;
    }
    return primes;
}

This has been optimised by only testing for divisibility up to the square root of the number being tested; and by only testing odd numbers. This can be further optimised by testing only numbers of the form 6k+[1, 5], or 30k+[1, 7, 11, 13, 17, 19, 23, 29] or so on.

Sieve of Eratosthenes (starblue)

This finds all the primes to k. To make a list of the first n primes, we first need to approximate value of the nth prime. The following method, as described here, does this.

public static int ApproximateNthPrime(int nn)
{
    double n = (double)nn;
    double p;
    if (nn >= 7022)
    {
        p = n * Math.Log(n) + n * (Math.Log(Math.Log(n)) - 0.9385);
    }
    else if (nn >= 6)
    {
        p = n * Math.Log(n) + n * Math.Log(Math.Log(n));
    }
    else if (nn > 0)
    {
        p = new int[] { 2, 3, 5, 7, 11 }[nn - 1];
    }
    else
    {
        p = 0;
    }
    return (int)p;
}

// Find all primes up to and including the limit
public static BitArray SieveOfEratosthenes(int limit)
{
    BitArray bits = new BitArray(limit + 1, true);
    bits[0] = false;
    bits[1] = false;
    for (int i = 0; i * i <= limit; i++)
    {
        if (bits[i])
        {
            for (int j = i * i; j <= limit; j += i)
            {
                bits[j] = false;
            }
        }
    }
    return bits;
}

public static List<int> GeneratePrimesSieveOfEratosthenes(int n)
{
    int limit = ApproximateNthPrime(n);
    BitArray bits = SieveOfEratosthenes(limit);
    List<int> primes = new List<int>();
    for (int i = 0, found = 0; i < limit && found < n; i++)
    {
        if (bits[i])
        {
            primes.Add(i);
            found++;
        }
    }
    return primes;
}

Sieve of Sundaram

I only discovered this sieve recently, but it can be implemented quite simply. My implementation isn't as fast as the sieve of Eratosthenes, but it is significantly faster than the naive method.

public static BitArray SieveOfSundaram(int limit)
{
    limit /= 2;
    BitArray bits = new BitArray(limit + 1, true);
    for (int i = 1; 3 * i + 1 < limit; i++)
    {
        for (int j = 1; i + j + 2 * i * j <= limit; j++)
        {
            bits[i + j + 2 * i * j] = false;
        }
    }
    return bits;
}

public static List<int> GeneratePrimesSieveOfSundaram(int n)
{
    int limit = ApproximateNthPrime(n);
    BitArray bits = SieveOfSundaram(limit);
    List<int> primes = new List<int>();
    primes.Add(2);
    for (int i = 1, found = 1; 2 * i + 1 <= limit && found < n; i++)
    {
        if (bits[i])
        {
            primes.Add(2 * i + 1);
            found++;
        }
    }
    return primes;
}

Solution 3:

Ressurecting an old question, but I stumbled over it while playing with LINQ.

This Code Requires .NET4.0 or .NET3.5 With Parallel Extensions

public List<int> GeneratePrimes(int n) {
    var r = from i in Enumerable.Range(2, n - 1).AsParallel()
            where Enumerable.Range(1, (int)Math.Sqrt(i)).All(j => j == 1 || i % j != 0)
            select i;
    return r.ToList();
}

Solution 4:

You are on the good path.

Some comments

  • primes.Add(3); makes that this function doesn't work for number = 1

  • You dont't have to test the division with primenumbers bigger that the squareroot of the number to be tested.

Suggested code:

ArrayList generatePrimes(int toGenerate)
{
    ArrayList primes = new ArrayList();

    if(toGenerate > 0) primes.Add(2);

    int curTest = 3;
    while (primes.Count < toGenerate)
    {

        int sqrt = (int) Math.sqrt(curTest);

        bool isPrime = true;
        for (int i = 0; i < primes.Count && primes.get(i) <= sqrt; ++i)
        {
            if (curTest % primes.get(i) == 0)
            {
                isPrime = false;
                break;
            }
        }

        if(isPrime) primes.Add(curTest);

        curTest +=2
    }
    return primes;
}