What is the point of getters and setters? [duplicate]
Solution 1:
Multiple reasons:
-
If you allow field access like
shape.x = 90
then you cannot add any logic in future to validate the data.
say if x cannot be less than 100 you cannot do it, however if you had setters like
public void setShapeValue(int shapeValue){
if(shapeValue < 100){
//do something here like throw exception.
}
}
- You cannot add something like copy on write logic (see CopyOnWriteArrayList)
- Another reason is for accessing fields outside your class you will have to mark them public, protected or default, and thus you loose control. When data is very much internal to the class breaking Encapsulation and in general OOPS methodology.
Though for constants like
public final String SOMETHING = "SOMETHING";
you will allow field access as they cannot be changed, for instance variable you will place them with getters, setters.
- Another scenario is when you want your Class to be immutable, if you allow field access then you are breaking the immutability of your class since values can be changed. But if you carefully design your class with getters and no setters you keep the immutability intact.
Though in such cases you have to be careful in getter method to ensure you don't give out reference of objects(in case your class have object as instances).
We can use the private variables in any package using getters and setters.
Solution 2:
Using getter and setter functions allow for constraints and encapsulation. Lets say x is the radius. shape.x = -10 would not make much sense. Also, if someone tries to set an illegal value, you can print an error, set a default value, or do nothing.
It is good practice to make member variables private so they cannot be modified directly by programs using them.
Mutator functions
Encapsulation
Solution 3:
A lot of people have mentioned encapsulating the specifics of the implementation, which to me is the biggest reason to use getters and setters in a class. With this, you also get a lot of other benefits, including the ability to throw out and replace the implementation on a whim without needing to touch every piece of code that uses your class. In a small project, that's not a big benefit, but if your code ends up as a well-used (internal or public) library, it can be a huge benefit.
One specific example: complex numbers in mathematics. Some languages have them as a language or framework feature, others don't. I will use a mutable class as an example here, but it could just as easily be immutable.
A complex number can be written on the form a + bi
with real and imaginary parts, lending itself well to [gs]etRealPart
and [gs]etImaginaryPart
.
However, in some cases it's easier to reason about complex numbers on polar form re^(iθ)
, giving [gs]etRadius
(r) and [gs]etAngle
(θ).
You can also expose methods like [gs]etComplexNumber(realPart, imaginaryPart)
and [gs]etComplexNumber(radius, angle)
. Depending on the argument types these may or may not need different names, but then the class' consumer can use either as fits its needs.
The two forms are interchangeable; you can fairly easily convert from one to the other, so which form the class uses for internal storage is irrelevant to consumers of that class. However, consumers may use either form. If you choose the form a+bi for internal representation, and expose that using fields rather than getters and setters, not only do you force the class consumers to use that form, you also cannot later easily change your mind and replace the internal representation with re^(iθ) because that turns out to be easier to implement in your particular scenario. You're stuck with the public API you have defined, which mandates that specifically the real and imaginary parts are exposed using specific field names.