Data structure for maintaining tabular data in memory?

Solution 1:

Having a "table" in memory that needs lookups, sorting, and arbitrary aggregation really does call out for SQL. You said you tried SQLite, but did you realize that SQLite can use an in-memory-only database?

connection = sqlite3.connect(':memory:')

Then you can create/drop/query/update tables in memory with all the functionality of SQLite and no files left over when you're done. And as of Python 2.5, sqlite3 is in the standard library, so it's not really "overkill" IMO.

Here is a sample of how one might create and populate the database:

import csv
import sqlite3

db = sqlite3.connect(':memory:')

def init_db(cur):
    cur.execute('''CREATE TABLE foo (
        Row INTEGER,
        Name TEXT,
        Year INTEGER,
        Priority INTEGER)''')

def populate_db(cur, csv_fp):
    rdr = csv.reader(csv_fp)
    cur.executemany('''
        INSERT INTO foo (Row, Name, Year, Priority)
        VALUES (?,?,?,?)''', rdr)

cur = db.cursor()
init_db(cur)
populate_db(cur, open('my_csv_input_file.csv'))
db.commit()

If you'd really prefer not to use SQL, you should probably use a list of dictionaries:

lod = [ ] # "list of dicts"

def populate_lod(lod, csv_fp):
    rdr = csv.DictReader(csv_fp, ['Row', 'Name', 'Year', 'Priority'])
    lod.extend(rdr)

def query_lod(lod, filter=None, sort_keys=None):
    if filter is not None:
        lod = (r for r in lod if filter(r))
    if sort_keys is not None:
        lod = sorted(lod, key=lambda r:[r[k] for k in sort_keys])
    else:
        lod = list(lod)
    return lod

def lookup_lod(lod, **kw):
    for row in lod:
        for k,v in kw.iteritems():
            if row[k] != str(v): break
        else:
            return row
    return None

Testing then yields:

>>> lod = []
>>> populate_lod(lod, csv_fp)
>>> 
>>> pprint(lookup_lod(lod, Row=1))
{'Name': 'Cat', 'Priority': '1', 'Row': '1', 'Year': '1998'}
>>> pprint(lookup_lod(lod, Name='Aardvark'))
{'Name': 'Aardvark', 'Priority': '1', 'Row': '4', 'Year': '2000'}
>>> pprint(query_lod(lod, sort_keys=('Priority', 'Year')))
[{'Name': 'Cat', 'Priority': '1', 'Row': '1', 'Year': '1998'},
 {'Name': 'Dog', 'Priority': '1', 'Row': '3', 'Year': '1999'},
 {'Name': 'Aardvark', 'Priority': '1', 'Row': '4', 'Year': '2000'},
 {'Name': 'Wallaby', 'Priority': '1', 'Row': '5', 'Year': '2000'},
 {'Name': 'Fish', 'Priority': '2', 'Row': '2', 'Year': '1998'},
 {'Name': 'Zebra', 'Priority': '3', 'Row': '6', 'Year': '2001'}]
>>> pprint(query_lod(lod, sort_keys=('Year', 'Priority')))
[{'Name': 'Cat', 'Priority': '1', 'Row': '1', 'Year': '1998'},
 {'Name': 'Fish', 'Priority': '2', 'Row': '2', 'Year': '1998'},
 {'Name': 'Dog', 'Priority': '1', 'Row': '3', 'Year': '1999'},
 {'Name': 'Aardvark', 'Priority': '1', 'Row': '4', 'Year': '2000'},
 {'Name': 'Wallaby', 'Priority': '1', 'Row': '5', 'Year': '2000'},
 {'Name': 'Zebra', 'Priority': '3', 'Row': '6', 'Year': '2001'}]
>>> print len(query_lod(lod, lambda r:1997 <= int(r['Year']) <= 2002))
6
>>> print len(query_lod(lod, lambda r:int(r['Year'])==1998 and int(r['Priority']) > 2))
0

Personally I like the SQLite version better since it preserves your types better (without extra conversion code in Python) and easily grows to accommodate future requirements. But then again, I'm quite comfortable with SQL, so YMMV.

Solution 2:

A very old question I know but...

A pandas DataFrame seems to be the ideal option here.

http://pandas.pydata.org/pandas-docs/version/0.13.1/generated/pandas.DataFrame.html

From the blurb

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure

http://pandas.pydata.org/

Solution 3:

I personally would use the list of row lists. Because the data for each row is always in the same order, you can easily sort by any of the columns by simply accessing that element in each of the lists. You can also easily count based on a particular column in each list, and make searches as well. It's basically as close as it gets to a 2-d array.

Really the only disadvantage here is that you have to know in what order the data is in, and if you change that ordering, you'll have to change your search/sorting routines to match.

Another thing you can do is have a list of dictionaries.

rows = []
rows.append({"ID":"1", "name":"Cat", "year":"1998", "priority":"1"})

This would avoid needing to know the order of the parameters, so you can look through each "year" field in the list.

Solution 4:

Have a Table class whose rows is a list of dict or better row objects

In table do not directly add rows but have a method which update few lookup maps e.g. for name if you are not adding rows in order or id are not consecutive you can have idMap too e.g.

class Table(object):
    def __init__(self):
        self.rows =  []# list of row objects, we assume if order of id
        self.nameMap = {} # for faster direct lookup for row by name

    def addRow(self, row):
        self.rows.append(row)
        self.nameMap[row['name']] = row

    def getRow(self, name):
        return self.nameMap[name]


table = Table()
table.addRow({'ID':1,'name':'a'})