Exponential Function of Quaternion - Derivation

The equation for the exponential function of a quaternion $q = a + b i + c j + dk$ is supposed to be $$e^{q} = e^a \left(\cos(\sqrt{b^2+c^2+d^2})+\frac{(b i + c j + dk)}{\sqrt{b^2+c^2+d^2}} \sin(\sqrt{b^2+c^2+d^2})\right)$$

I'm having a difficult time finding a derivation of this formula. I keep trying to derive it, but I end up getting different results. Would someone be able to point me to a proof of this formula or do the derivation here?

Note: I also don't understand why some people say $e^q = e^a e^{b i + c j + d k}$. Can you please explain this, too?


Solution 1:

The definition of quaternionic exponential is given by the absolutely convergent series $$ e^z=\sum_{k=0}^\infty\dfrac{z^k}{k!} $$ It is well known that, from this definition, if $x, y$ commute we have $e^xe^y=e^ye^x=e^{x+y}$. Since real quaternions commute with all other quaternions, for $a \in \mathbb{R}$ we have $e^{a+z}=e^ae^z \; \forall z\in \mathbb{H}$ so, if $z=a+b\mathbf{i}+c\mathbf{j}+d\mathbf{k} = a+\mathbf{v}$, we have $e^z=e^ae^\mathbf{v}$, where $\mathbf{v}$ is an imaginary (or vector) quaternion. Now we have:

claim

If $ \mathbf{v} \in \mathbb{H}_P$ is an imaginary quaternion, putting $\theta=|\mathbf{v}|$ we have: $$ e^\mathbf{v}= \cos\theta + \mathbf{v}\;\dfrac{\sin \theta}{\theta} $$ proof

We note that: $$ \mathbf{v}^2= (b \mathbf{i}+c \mathbf{j} +d \mathbf{k})(b \mathbf{i}+c \mathbf{j} +d \mathbf{k})= -b^2-c^2-d^2=-|\mathbf{v}|^2 $$ so: $$ \mathbf{v}^2= -\theta^2 \quad,\quad \mathbf{v}^3= -\theta^2\mathbf{v} \quad,\quad \mathbf{v}^4= \theta^4 \quad,\quad \mathbf{v}^5= \theta^4 \mathbf{v} \quad,\quad \mathbf{v}^6= -\theta^6 \quad,\quad \cdots $$ and the series become. $$ \begin{split} e^\mathbf{v}&=\sum_{k=0}^\infty\dfrac{\mathbf{v}^k}{k!}=\\ % &=1+\dfrac{\mathbf{v}}{1!}-\dfrac{\theta^2}{2!}-\dfrac{\theta^2\mathbf{v}}{3!}+\dfrac{\theta^4}{4!}+\dfrac{\theta^4\mathbf{v}}{5!}-\dfrac{\theta^6}{6!}+\cdots=\\ % &=1+\dfrac{\theta\mathbf{v}}{1!\,\theta}-\dfrac{\theta^2}{2!}-\dfrac{\theta^3\mathbf{v}}{3!\,\theta}+\dfrac{\theta^4}{4!}+\dfrac{\theta^5\mathbf{v}}{5!\,\theta}-\dfrac{\theta^6}{6!}+\cdots=\\ % &=\left(1-\dfrac{\theta^2}{2!}+\dfrac{\theta^4}{4!}-\dfrac{\theta^6}{6!}\cdots\right)+\dfrac{\mathbf{v}}{\theta}\left( \dfrac{\theta}{1!}-\dfrac{\theta^3}{3!}+\dfrac{\theta^5}{5!}\cdots\right)=\\ % &=\cos\theta +\dfrac{\mathbf{v}}{\theta}\sin\theta \end{split} $$

So the exponential of a quaternion is: $$ e^z = e^{a+\mathbf{v}}=e^a \left( \cos |\mathbf{v}| +\dfrac{\mathbf{v}}{|\mathbf{v}|} \,\sin |\mathbf{v}| \right) $$