How can I determine a general formula for the nth derivative of any continuous function $f(x)$ differentiable at least $n$ times?

I know how to do it with easier functions, but is there a universal method which can be applied to all continuous functions differentiable at least $n$ times(introduced to in a second year calculus class)?

I can do it for easy ones like $\sin(x)$ and $\cos(x)$, but $\sin(x^2)$ and $\tan(x)$ and $\ln(1+x^2)$ are proving to be very difficult.

Thanks.


The functions that you list, $\sin(x^2)$ and $\tan(x)$ and $\ln(1+x^2)$ are indeed infinitely many times differentiable, you just need to learn differentiation rules, e.g. product, quotient, chain, power rule, etc, and differentiate these functions as many times as you wish (and, perhaps, in some cases find a general formula for the $n$th derivative). Well, for some functions it will indeed be difficult to find a general formula. You may take the first few derivatives, and try to guess the formula for the $n$th derivative in each specific case. If you guess is correct, then you may prove it by induction.


There are four parts in this answer.

Part I

The Faa di Bruno formula (see Theorem 11.4 in the book [1] and Theorem C on page 139 in the monograph [2] below) can be described in terms of the Bell polynomials of the second kind $B_{n,k}\bigl(x_1,x_2,\dotsc,x_{n-k+1}\bigr)$ by \begin{equation}\label{Bruno-Bell-Polynomial}\tag{1} \frac{\textrm{d}^n}{\textrm{d}x^n}f\circ h(x)=\sum_{k=0}^nf^{(k)}(h(x)) B_{n,k}\bigl(h'(x),h''(x),\dotsc,h^{(n-k+1)}(x)\bigr), \quad n\ge0. \end{equation} In Theorem 5.1 of the paper [3] and Section 3 of the paper [4] below, it was found that \begin{equation}\label{Bell-x-1-0-eq}\tag{2} B_{n,k}(x,1,0,\dotsc,0) =\frac{1}{2^{n-k}}\frac{n!}{k!}\binom{k}{n-k}x^{2k-n}, \quad n\ge k\ge0, \end{equation} where $\binom{0}{0}=1$ and $\binom{p}{q}=0$ for $q>p\ge0$. Consequently, as an example, we have \begin{equation*} \Bigl(e^{x^2}\Bigr)^{(n)} =e^{x^2}\frac{n!}{(2x)^n} \sum_{k=0}^{n}\binom{k}{n-k}\frac{(2x)^{2k}}{k!}, \quad n\ge0. \end{equation*} Similarly, by virtue of the formulas \eqref{Bruno-Bell-Polynomial} and \eqref{Bell-x-1-0-eq}, general formulas for the $n$th derivatives of the functions $\sin\bigl(x^2\bigr)$ and $\ln\bigl(1+x^2\bigr)$ can be derived readily as \begin{equation}\tag{+} \bigl[\sin\bigl(x^2\bigr)\bigr]^{(n)} =\frac{n!}{(2x)^n}\sum_{k=1}^n\binom{k}{n-k}\frac{(2x)^{2k}}{k!} \sin\biggl(x^2+\frac{k\pi}{2}\biggr), \quad n\ge0 \end{equation} and \begin{equation}\tag{#} \bigl[\ln\bigl(1+x^2\bigr)\bigr]^{(n)} =\frac{n!}{(2x)^n}\sum_{k=1}^n\binom{k}{n-k}\frac{(-1)^{k-1}}{k}\frac{(2x)^{2k}}{(1+x^2)^{k}}, \quad n\ge1. \end{equation}

Part II

In Theorem 1.2 of the paper [5] below, it was derived that \begin{multline}\label{bell-sin-eq}\tag{3} B_{n,k}\biggl(-\sin x,-\cos x,\sin x,\cos x,\dotsc, \cos\biggl[x+\frac{(n-k+1)\pi}{2}\biggr]\biggr)\\ =\frac{(-1)^k\cos^kx}{k!}\sum_{\ell=0}^k\binom{k}{\ell}\frac{(-1)^\ell}{(2\cos x)^\ell} \sum_{q=0}^\ell\binom{\ell}{q}(2q-\ell)^n \cos\biggl[(2q-\ell)x+\frac{n\pi}2\biggr] \end{multline} and \begin{multline}\label{bell-sin=ans}\tag{4} B_{n,k}\biggl(\cos x,-\sin x,-\cos x,\sin x,\dotsc, \sin\biggl[x+\frac{(n-k+1)\pi}{2}\biggr]\biggr)\\ =\frac{(-1)^k\sin^{k}x}{k!}\sum_{\ell=0}^k\binom{k}{\ell}\frac1{(2\sin x)^{\ell}} \sum_{q=0}^\ell(-1)^q\binom{\ell}{q}(2q-\ell)^n \cos\biggl[(2q-\ell)x+\frac{(n-\ell)\pi}2\biggr] \end{multline} for $n\ge k\ge0$. Since $\sin\bigl(x\pm\frac{\pi}{2}\bigr)=\pm\cos x$ and $\cos\bigl(x\pm\frac{\pi}{2}\bigr)=\mp\sin x$, the formulas \eqref{bell-sin-eq} and \eqref{bell-sin=ans} are equivalent to each other. These two formulas \eqref{bell-sin-eq} and \eqref{bell-sin=ans} can be applied to establish general formulas of the $n$th derivatives for functions of the types $f(\sin x)$ and $f(\cos x)$, such as $\sin^\alpha x$, $\cos^\alpha x$, $\sec^\alpha x$, $\csc^\alpha x$, $e^{\pm\sin x}$, $e^{\pm\cos x}$, $\ln\cos x$, $\ln\sin x$, $\ln\sec x$, $\ln\csc x$, $\sin\sin x$, $\cos\sin x$, $\sin\cos x$, $\cos\cos x$, $\tan x=-(\ln\cos x)'$, and $\cot x=(\ln \sin x)'$, if the general formula for the $n$th derivative of $f$ is computable.

Part III

Define the falling factorial of $\alpha\in\mathbb{C}$ by \begin{equation*}%\label{Fall-Factorial-Dfn-Eq} \langle\alpha\rangle_n= \prod_{k=0}^{n-1}(\alpha-k)= \begin{cases} \alpha(\alpha-1)\dotsm(\alpha-n+1), & n\ge1;\\ 1,& n=0. \end{cases} \end{equation*} In Remark 3.1 on page 88 in the paper [17] below, the formula \begin{equation}\label{Bell-1-lambda}\tag{5} B_{n,k}\Biggl(1, 1-\lambda, (1-\lambda)(1-2\lambda),\dotsc, \prod_{\ell=0}^{n-k}(1-\ell\lambda)\Biggr) =\frac{(-1)^k}{k!} \sum_{\ell=0}^k (-1)^{\ell} \binom{k}{\ell} \prod_{q=0}^{n-1}(\ell-q\lambda) \end{equation} for $\lambda\in\mathbb{C}$ and $n\ge k\ge0$ was concluded. In Theorem 2.1 on page 165 in the paper [11] below, it was discovered that \begin{equation}\label{Bell-fall-Eq}\tag{6} B_{n,k}(\langle\alpha\rangle_1, \langle\alpha\rangle_2, \dotsc,\langle\alpha\rangle_{n-k+1}) =\frac{(-1)^k}{k!}\sum_{\ell=0}^{k}(-1)^{\ell}\binom{k}{\ell}\langle\alpha\ell\rangle_n \end{equation} for $\alpha\in\mathbb{C}$ and $n\ge k\ge0$. These two formulas \eqref{Bell-1-lambda} and \eqref{Bell-fall-Eq} are equivalent to each other.

By virtue of the Faa di Bruno formula \eqref{Bruno-Bell-Polynomial} and any one of the formulas \eqref{Bell-1-lambda} and \eqref{Bell-fall-Eq}, one can establish general formulas of the $n$th derivatives for functions of the type $f(x^\alpha)$ for $\alpha\in\mathbb{R}$, such as $e^{x^\alpha}$, $\sin[(a+bx)^\alpha]$, and $\ln(1\pm x^\alpha)$, if the $n$th derivative of the function $f$ is computable.

Part IV

The $n$th derivative formulas for the tangent function $\tan x=\dfrac{\sin x}{\cos x}$ and the cotangent function $\cot x=\dfrac{\cos x}{\sin x}$ can also be computed by the formula \begin{equation}\label{Sitnik-Bourbaki}\tag{7} \frac{\textrm{d}^k}{\textrm{d}z^k}\biggl(\frac{u}{v}\biggr) =\frac{(-1)^k}{v^{k+1}} \begin{vmatrix} u & v & 0 & \dotsm & 0\\ u' & v' & v & \dotsm & 0\\ u'' & v'' & 2v' & \dotsm & 0\\ \dotsm & \dotsm & \dotsm & \ddots & \dotsm\\ u^{(k-1)} & v^{(k-1)} & \binom{k-1}1v^{(k-2)} & \dots & v\\ u^{(k)} & v^{(k)} & \binom{k}1v^{(k-1)} & \dots & \binom{k}{k-1}v' \end{vmatrix}. \end{equation} For details on the formula \eqref{Sitnik-Bourbaki}, please refer to https://math.stackexchange.com/a/4261705/945479.

The texts in the first three parts above are extracted and modified from Sections 1.3, 1.4, and 1.6 in the paper [6] below.

References

  1. C. A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.
  2. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., 1974; available online at https://doi.org/10.1007/978-94-010-2196-8.
  3. F. Qi and B.-N. Guo, Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials, Mediterr. J. Math. 14 (2017), no. 3, Art. 140, 14 pages; available online at https://doi.org/10.1007/s00009-017-0939-1.
  4. F. Qi and M.-M. Zheng, Explicit expressions for a family of the Bell polynomials and applications, Appl. Math. Comput. 258 (2015), 597--607; available online at https://doi.org/10.1016/j.amc.2015.02.027.
  5. F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844--858; available online at https://doi.org/10.1016/j.amc.2015.06.123.
  6. Feng Qi, Da-Wei Niu, Dongkyu Lim, and Yong-Hong Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, Journal of Mathematical Analysis and Applications 491 (2020), no. 2, Paper No. 124382, 31 pages; available online at https://doi.org/10.1016/j.jmaa.2020.124382.
  7. Bai-Ni Guo, Dongkyu Lim, and Feng Qi, Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions, AIMS Mathematics 6 (2021), no. 7, 7494--7517; available online at https://doi.org/10.3934/math.2021438.
  8. Bai-Ni Guo, Dongkyu Lim, and Feng Qi, Maclaurin series expansions for powers of inverse (hyperbolic) sine, for powers of inverse (hyperbolic) tangent, and for incomplete gamma functions, with applications, arXiv (2021), available online at https://arxiv.org/abs/2101.10686v6.
  9. Feng Qi and Dongkyu Lim, Closed formulas for special Bell polynomials by Stirling numbers and associate Stirling numbers, Publications de l'Institut Mathematique (Beograd) 108 (2020), no. 122, 131--136; available online at https://doi.org/10.2298/PIM2022131Q.
  10. Feng Qi, Pierpaolo Natalini, and Paolo Emilio Ricci, Recurrences of Stirling and Lah numbers via second kind Bell polynomials, Discrete Mathematics Letters 3 (2020), 31--36.
  11. Feng Qi, Da-Wei Niu, Dongkyu Lim, and Bai-Ni Guo, Closed formulas and identities for the Bell polynomials and falling factorials, Contributions to Discrete Mathematics 15 (2020), no. 1, 163--174; available online at https://doi.org/10.11575/cdm.v15i1.68111.
  12. Feng Qi, Dongkyu Lim, and Bai-Ni Guo, Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations, Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A Matematicas 113 (2019), no. 1, 1--9; available online at https://doi.org/10.1007/s13398-017-0427-2.
  13. Feng Qi, Dongkyu Lim, and Yong-Hong Yao, Notes on two kinds of special values for the Bell polynomials of the second kind, Miskolc Mathematical Notes 20 (2019), no. 1, 465--474; available online at https://doi.org/10.18514/MMN.2019.2635.
  14. Feng Qi, Da-Wei Niu, and Bai-Ni Guo, Some identities for a sequence of unnamed polynomials connected with the Bell polynomials, Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A Matematicas 113 (2019), no. 2, 557--567; available online at https://doi.org/10.1007/s13398-018-0494-z.
  15. A.-M. Xu and G.-D. Cen, Closed formulas for computing higher-order derivatives of functions involving exponential functions, Appl. Math. Comput. 270 (2015), 136--141; available online at https://doi.org/10.1016/j.amc.2015.08.051.
  16. A.-M. Xu and Z.-D. Cen, Some identities involving exponential functions and Stirling numbers and applications, J. Comput. Appl. Math. 260 (2014), 201--207; available online at https://doi.org/10.1016/j.cam.2013.09.077.
  17. Bai-Ni Guo and Feng Qi, Viewing some ordinary differential equations from the angle of derivative polynomials, Iranian Journal of Mathematical Sciences and Informatics 16 (2021), no. 1, 77--95; available online at https://doi.org/10.29252/ijmsi.16.1.77.